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Abstract
HIERARCHICAL HYPERBOLICITY OF GRAPH PRODUCTS AND GRAPH BRAID GROUPS
by

DANIEL JAMES SOLOMON BERLYNE

Advisor: Jason Behrstock

This thesis comprises three original contributions by the author concerning hierarchical
hyperbolicity, a coarse geometric tool developed by Behrstock, Hagen, and Sisto to provide
a common framework for studying aspects of non-positive curvature in a wide variety of
groups and spaces.

We show that any graph product of finitely generated groups is hierarchically hyperbolic
relative to its vertex groups. We apply this to answer two questions of Genevois about the
electrification of a graph product of finite groups. We also answer two questions of Behrstock,
Hagen, and Sisto: we show that the syllable metric on a graph product forms a hierarchically
hyperbolic space, and that graph products of hierarchically hyperbolic groups are themselves
hierarchically hyperbolic groups. This last result is a strengthening of a result of Berlai and
Robbio by removing the need for extra hypotheses on the vertex groups. To achieve this, we
develop a technique that allows an almost hierarchically hyperbolic structure to be promoted
to a hierarchically hyperbolic structure. This technique has found independent use in work
of Abbott, Behrstock, and Durham, where it is used to significantly streamline their proofs.

We then turn to graph braid groups, using their structure as fundamental groups of
special cube complexes to endow them with a natural hierarchically hyperbolic structure.
By expressing this structure in terms of the graph, we obtain characterisations of when these
groups are hyperbolic or acylindrically hyperbolic. We also conjecture and partially prove a

similar characterisation of relative hyperbolicity.

v



Acknowledgments

I would like to thank my advisor, Jason Behrstock, who has provided guidance throughout
my PhD, patiently answering all my questions while also teaching me valuable lessons on
how to thrive as an independent mathematician. I remember well the day you approached
me after attending my talk on Teichmiiller theory and suggested I speak with you. Despite
my background being primarily in complex analysis, you made the transition to geometric
group theory easy and exciting. Your support and your advocacy on my behalf have been
invaluable. I also extend my thanks to Ilya Kapovich and Joseph Maher for serving on my
thesis committee alongside Jason.

I would also like to thank my past and current collaborators. You have made mathematics
an even more enjoyable and meaningful pursuit than it already was. The papers I wrote
with Jacob Russell have been formative to my identity as a mathematician, while my current
venture with Carolyn Abbott, Alex Rasmussen, and Thomas Ng has already provided many
inspiring and eye-opening conversations of its own. It is fair to say that these joint works
have vastly changed my perspective on how mathematics ought to be undertaken.

I would like to thank Jason Behrstock, Mark Hagen, Carolyn Abbott, Ilya Kapovich, and
Olga Kharlampovich for writing letters of recommendation for me. You were instrumental
in my success in finding a job. I would especially like to thank Mark for inviting me to speak
at Bristol and spending so much time talking about mathematics with me and introducing
me to Bristol’s mathematics community. Your hospitality made me feel very welcome, and

I am sure that my postdoc in Bristol is in no small part due to your efforts.

v



I am tremendously grateful for all the friends I made along my journey as a graduate
student. I thank Jacob Russell, Ivan Levcovitz, Hai Yu, GB Pignatti, Laura Lopez-Cruz, AJ
Stas, Chris Natoli, Alice Kwon, and Kieran O’Reilly for teaching and learning with me, and
for brightening my experience at the Graduate Center. I have many fond memories of our
experiences in the shoebox. I am also very fortunate to have met so many wonderful people
through conferences, such as Harry Petyt, Bruno Robbio, Davide Spriano, Yvon Verberne,
and Kasia Jankiewicz.

I would like to thank Jason Behrstock, Abhijit Champanerkar, Ilya Kofman, and Joseph
Mabher for countless enjoyable Korean lunches, both down in Midtown and up near Columbia.
The seminars you run and the community you have fostered around them have been a
cornerstone to my graduate experience. You have taught me a great deal about hierarchical
hyperbolicity, 3—manifolds, knot theory, and random walks, all of which have influenced the
research I conduct today.

I am grateful to my Master’s advisor, Saul Schleimer, for introducing me to geometric
group theory, even if I didn’t know it at the time. You planted the seed which turned my
interest in Teichmiiller space and Beltrami differentials into an appreciation of mapping class
groups and eventually into a love of geometric group theory as a whole.

I am thankful to my teachers at the Manchester Grammar School, who opened my mind
to the sheer breadth of mathematics and its interconnectedness. I am especially thankful to
Neil Sheldon, who seemed to be able to teach everything under the sun, from probability to
differential equations. 1 will always remember the summer of 2010 when you taught us an
entire numerical analysis course in one week in the confines of a cramped IT lab.

But I am most thankful to my kind and loving family, who provided the environment
which made all of this possible. My mother and father, Jayne and Brian, deserve a great
deal of credit for my success, having nurtured my curiosity from a young age and having

done all they could to allow me to spread my wings. My brother, Josh, has instigated

vi



many an interesting philosophical conversation, and has humoured my many ramblings about
alternative systems of logic and non-Euclidean geometries. Nathan Somers, while not family
by blood, has been a close friend, ally, and confidante throughout most of my life. You have
seen me through many highs and lows, and have provoked in me a love of linguistics and its
mathematical connections.

And Miranda, my dearest love, closest companion, and the newest addition to my family,
has been by my side at all times throughout this most challenging leg of my journey. You
have taught me confidence and resolve, and have given me the strength to carry on in the
face of Sisyphean adversity. You have pushed me when I have faltered, held me when I have
buckled, and picked me up when I have fallen. Without you I am not sure I would be in this

position today. I thank you sincerely.

The results in Chapter 3 appear as an appendix to [ABD21|, and the results in Chapter
4 appear in [BR20].

vii



Contents

List of Figures

1

2

Introduction

1.1 Contributions of the author . . . . . .. ... ... ... ... ... ...,
1.1.1 Hierarchical hyperbolicity of graph products . . . . . . . ... .. ..
1.1.2  Almost hierarchical hyperbolicity implies hierarchical hyperbolicity
1.1.3 Non-positive curvature in graph braid groups . . . . ... .. .. ..

1.2 Outline of the thesis . . . . . . . .. .. ..

Background

2.1 Coarse geometry . . . . ...
2.1.1  Graph terminology . . . . . . . .. ..o
2.2 Relative hyperbolicity and thickness . . . . . . . . .. ... ... ... ....
2.2.1 Relative hyperbolicity . . . . . .. ... ... oo
2.2.2 Thickness and divergence . . . . . . . . . ... ... L.
2.3 Acylindrical hyperbolicity . . . . . . . .. ... L o
24 Cubecomplexes . . . . . ..
2.4.1 Right-angled Artin groups . . . . . . . .. ... L.
2.4.2 Right-angled Coxeter groups . . . . . . . . . . ... ... ... ...

2.5 Graph braid groups . . . . . ... Lo

xi

Ne R

10
13



2.6 Quasi-median graphs . . . . . . . ... 47
2.6.1 Graph products . . . . . . ... 49
2.7 Hierarchical hyperbolicity . . . . . . ... .. ... ... 0. 58
2.7.1 Detecting other forms of hyperbolicity in HHSs . . . . . ... .. .. 64
2.72 Relative HHSs . . . . . . . . .. . 66
2.7.3 Almost HHSs . . . . . . . . . 67
2.7.4 HHS structures on CAT(0) cube complexes . . . . . . .. .. ... .. 68
Almost HHSs are HHSs 72
Hierarchical hyperbolicity of graph products 84
4.1 The proto-hierarchy structure on a graph product . . . . . . ... ... ... 85
4.1.1 The index set, associated spaces, and projections. . . . . . . . . ... 85
4.1.2 Therelations . . . . . . . .. 96
4.1.3 The proto-hierarchy structure . . . . . ... ... ... ... ... .. 101
4.2  Graph products are relative HHGs . . . . . .. .. .. ... ... 102
4.2.1 Hyperbolicity . . . . . . . .. 103
4.2.2  Finite complexity and containers . . . . . . . ... ... ... .. .. 109
4.2.3 Uniqueness . . . . . . . .. 110
4.2.4 Bounded geodesic image and large links . . . . . . ... ... ... .. 114
4.2.5 Partial realisation . . . . . . ... oo 117
4.2.6 Consistency . . . . . . . . 119
4.2.7 Compatibility of the group structure . . . . . . ... ... ... ... 121
4.2.8 Graph products are relative HHGs . . . . . .. .. ... ... .. 122
4.2.9 The syllable metricisan HHS . . . . . ... .. .. ... .. ... .. 126
4.3 Some applications of hierarchical hyperbolicity . . . . . . . .. ... ... .. 127
4.3.1 Graph products of HHGs . . . . . . . . . .. .. ... ... ... ... 128

1X



4.3.2 Meier’s condition for hyperbolicity . . . .. .. ... ... ... ... 136

4.3.3 Genevois’ minsquare electrification. . . . . . . .. ... L 138

5 Non-positive curvature in graph braid groups 144
5.1 The hierarchically hyperbolic structure on a graph braid group . . . . . . . . 145
5.1.1 The cubical structure . . . . . . .. .. oo 145

5.1.2  The HHG structure . . . . . . . .. .. ... ... ... 147

5.2 Detecting other forms of hyperbolicity in a graph braid group . . ... ... 153
5.2.1 Hyperbolicity and acylindrical hyperbolicity . . . . .. .. ... ... 154

5.2.2 Relative hyperbolicity and thickness. . . . . . .. .. ... ... ... 157
Bibliography 165



List of Figures

1.1 Non-positive curvature in (Z X Z) «Z . . . . . . o ..o o 4
1.2 A 3-braid . . . . . . .. 10
2.1 Aninduced subgraph . . . . . ..o oo 19
2.2 Acycleand astar graph . . . . . ... ..o 20
2.3 The link and star of a vertex . . . . . . . .. ... oL 20
2.4 A cube complex that is not non-positively curved . . . . . . . .. ... ... 27
2.5 Self-osculation and inter-osculation . . . . .. .. ... ..o 0oL 29
2.6 A geodesic triangle in the contact graph gives a loopin X . . .. ... ... 34
2.7 Case 1 of the proof of hyperbolicity of the contact graph . . . . . ... ... 35
2.8 Case 2 of the proof of hyperbolicity of the contact graph . . . . . ... ... 36
2.9 Case 3 of the proof of hyperbolicity of the contact graph . . . . . ... . .. 37
2.10 Case 4 of the proof of hyperbolicity of the contact graph . . . . . .. . . .. 38
2.11 The induction procedure on hyperplanes dual to a geodesic segment . . . . . 38
2.12 The graphs K, and Ko . . . . . . . .. ... .. L0 48
2.13 The triangle and quadrangle conditions . . . . . . . ... ... ... 48
2.14 Examples of mid-prisms . . . . . . ... 54
2.15 A hyperplane inside its carrier, and an associated combinatorial hyperplane . 55
4.1 A branching hyperplane . . . . . . . . ... 91

x1



4.2 Hyperplanes crossing between two geodesics . . . . . . ... .. .. ... .. 94
4.3 Pushing a hyperplane crossing outside a geodesic . . . . . . . ... ... .. 95
4.4 A hyperplane separating two points from their projections . . . . . . . . .. 100
4.5 Re-ordering hyperplanes . . . . . . . . . ... L oL 101
4.6 Replacing a geodesic triangle in C'(gA) with a loop in S(gA) . . . . . .. .. 104
4.7 An outermost hyperplane . . . . . . . ... L 106
4.8 Following a sequence of combinatorial hyperplanes . . . . . . . . .. ... .. 107
4.9 Projecting between nested domains . . . . . ... ... 115
4.10 Behaviour of hyperplanes crossing transverse domains . . . . . . . . .. . .. 120
5.1 An unordered combinatorial configuration space . . . . . .. ... ... ... 146

xii



To Jayne and Brian. For encouraging me to follow my passions no matter where they

might lead, and supporting me unconditionally every step of the way.

xiil



We shall not cease from exploration
And the end of all our exploring
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And know the place for the first time.
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Chapter 1

Introduction

While groups have long been used as a tool for studying geometry—for example, the study
of Kleinian groups dates back to Klein and Poincaré in the 1880s—the use of geometry to
study groups is a much more recent endeavour. This area, known as geometric group theory,
was studied by a number of authors in the 20th century such as Dehn, Milnor-Svarc, and
Bass—Serre, but did not become recognisable as a field in its own right until the publication
of two seminal papers by Gromov [Gro87, Gro93|. In these, he detailed a programme for
the study of group theory from the point of view of a collection of natural discrete metrics
associated to any finitely generated group. These so-called word metrics measure distance
between two elements g and h of a group GG by counting the number of elements required to
express the difference ¢g~'h as a product of generators of G and their inverses.

One must beware that a group can have many word metrics, depending on the choice
of generating set. However, so long as these generating sets are finite, the distances with
respect to any two word metrics are equivalent up to a multiplicative and additive constant;
we say the metric spaces are quasi-isometric. By restricting ourselves to geometric properties
that are invariant under quasi-isometry, we therefore obtain invariants of the group itself,
independent of the choice of generating set.

The discreteness of this geometry bars one from utilising the traditional techniques of
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Riemannian geometry. Nonetheless, there are ways of developing analogues of classical Rie-
mannian concepts which make sense in this discrete setting. This is primarily achieved by
studying the Cayley graphs of a finitely generated group G, defined by representing elements
of G by vertices and connecting two vertices by an edge whenever the corresponding elements
differ by a generator. By assigning each edge a length of 1, we see that these Cayley graphs
are quasi-isometric to the group G with the corresponding word metrics. Moreover, the
Cayley graphs can be viewed as geodesic metric spaces, granting access to a greater range
of geometric tools.

For example, one of Gromov’s most influential contributions to geometric group theory
was through the development of the concept of hyperbolicity of a group. By mimicking the
‘thin” appearance of triangles in hyperbolic Riemannian manifolds, one is able to develop
a version of hyperbolicity that can be applied to any geodesic metric space, and thus in
particular to Cayley graphs. Specifically, a geodesic metric space is defined to be d—hyperbolic
if every geodesic triangle satisfies the condition that each side is contained in the union of
the 0—neighbourhoods of the other two sides. A group is then defined to be hyperbolic if its
Cayley graphs are hyperbolic.

Surprisingly, this simple condition is sufficient to capture many aspects of negative cur-
vature seen in the Riemannian setting. For example, one can develop a discrete analogue
of volume by counting the number of group elements contained in a ball of a given radius.
In a hyperbolic group, this volume is seen to grow exponentially with the radius of the
ball. Finitely presented hyperbolic groups can also be shown to satisfy a linear isoperimetric
inequality, with the appropriate analogues of perimeter and area.

Hyperbolic groups are seen in a wide variety of places. For example, finite groups, free
groups, small cancellation groups, and fundamental groups of closed hyperbolic manifolds
are hyperbolic. In fact, hyperbolicity is in some sense ubiquitous among groups; by studying

random groups, Gromov and Ol’shanskii show that almost every finitely presented group is



hyperbolic [Gro93, O1'92|. Despite this, there are many interesting and important classes of
groups that are not hyperbolic in the strictly homogeneous sense required by d—hyperbolicity,
but do exhibit some hyperbolic behaviour. There have therefore been many attempts to
generalise the definition of hyperbolicity in order to capture this.

One of the first such generalisations was that of relative hyperbolicity, suggested by Gro-
mov himself and improved upon by Farb, Bowditch, and others [Gro87, Far98, Bowl2,
DS05, Osi06]. Another example is acylindrical hyperbolicity, developed by Osin by build-
ing upon ideas of Sela and Bowditch [Osil6, Sel97, Bow08]. The primary focus of this
thesis, however, shall be hierarchical hyperbolicity, developed by Behrstock, Hagen, and
Sisto [BHS17b, BHS19] as a way of describing hyperbolic behaviour in quasi-geodesic metric
spaces via machinery akin to that introduced for mapping class groups by Masur and Minsky
[MM99, MMO0|.

The work of Behrstock, Hagen, and Sisto originally focused on developing such machin-
ery for right-angled Artin groups, but hierarchical hyperbolicity also provides a common
framework in which to study a wide variety of other groups and spaces. Prominent exam-
ples include virtually cocompact special groups and most CAT(0) cube complexes [BHS17b],
fundamental groups of closed 3—manifolds with no Nil or Sol components in their prime
decomposition [BHS19|, Teichmiiller space with either the Teichmiiller metric or the Weil-
Petersson metric (|[Raf07, Durl6, EMR17| and [Bro03, Beh06, BKMM12] respectively), and
graph products of hyperbolic groups [BR18|.

Hierarchical hyperbolicity has deep geometric consequences for a space, including a Masur
and Minsky style distance formula [BHS19|, a quadratic isoperimetric inequality [BHS19|,
rank rigidity and Tits alternative theorems [DHS17, DHS19|, control over top-dimensional
quasi-flats [BHS17¢|, and bounds on the asymptotic dimension [BHS17a]. Moreover, the rich
structure afforded by hierarchical hyperbolicity also allows one to detect the presence of other

forms of hyperbolicity, such as d~hyperbolicity [BHS17¢|, relative hyperbolicity [Rus20], and



acylindrical hyperbolicity [BHS17b].

A hierarchically hyperbolic structure on a quasi-geodesic space X" is a collection of uni-
formly hyperbolic spaces C'(W) indexed by the elements W of an index set &. For each
W € &, there is a projection map from X onto the hyperbolic space C'(W), and every pair of
elements of & is related by one of three mutually exclusive relations: orthogonality, nesting,
and transversality. This data then satisfies a collection of axioms that allow for the geome-
try of the entire space to be recovered from the projections to the hyperbolic spaces C'(W).
Furthermore, this structure encodes non-positive curvature occurring in the space; we obtain
information about hyperbolic aspects of X through the projections to the hyperbolic spaces

C(W), while flats (copies of Z") in X are encoded by the orthogonality relation.

ﬁ
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Figure 1.1: The right-angled Artin group (Z x Z) = Z can be endowed with a hierarchically
hyperbolic structure. Its Cayley graph (centre) contains both Euclidean planes and copies
of the Cayley graph of the hyperbolic group Z = Z (left).

1.1 Contributions of the author

The original contributions of this thesis focus on three topics, based on three pieces of work
the author has produced during his graduate studies. Two of these are joint projects with
Jacob Russell, which have resulted in a joint paper [BR20] and an appendix to a paper of

Carolyn Abbott, Jason Behrstock, and Matthew Durham [ABD21|. The three pieces of work

are summarised below.



1.1.1 Hierarchical hyperbolicity of graph products

In Chapter 4 we construct an explicit hierarchically hyperbolic structure for any graph
product, generalising the standard hierarchically hyperbolic structures on right-angled Artin
groups. Given a finite simplicial graph I' with vertex set V(I') and edge set E(I"), we define

the right-angled Artin group Ar by
Ar = V() | [v,w] = e ¥V {v,w} € E(T)).

More generally, if we associate to each vertex v of I' a finitely-generated group G,, then we

define the graph product Gr by

Gr = ( x )Gv>/<<[gvagw] ‘ Gv € Gy, guw € Gy, {U7w} € E<F)>>>

veV (T

so that Ar is obtained as the special case where the vertex groups are G, = Z for all v € V(I').

For right-angled Artin groups Ar, a hierarchically hyperbolic structure was constructed
by Behrstock, Hagen, and Sisto in [BHS17b| using the collection of induced subgraphs of
the defining graph I'; in the following way. Each induced subgraph A of I' generates a new
right-angled Artin group A,, which is realised as a subgroup of Ar. The Cayley graph of Ap
is the 1-skeleton of a CAT(0) cube complex X, which comes equipped with a projection to
a hyperbolic space C'(X) called the contact graph. Since each subgraph A of I' generates its
own right-angled Artin group with associated cube complex Y < X, the subgroup A, has
its own associated contact graph C'(Y'). Since edges of I' correspond to commuting relations
in Ar, join subgraphs of I' (that is, subgraphs of the form A; Ly Ay where every vertex of A4
is joined by an edge to every vertex of Ay) generate direct product subgroups of Ar. This
provides us with an intuitive notion of orthogonality within our hierarchy. Set containment
of subgraphs of I'" provides a natural partial order in the hierarchy, which we call nesting,

and any subgraphs that are not orthogonal or nested are considered transverse. Collectively,

5



the hyperbolic spaces C(Y') allow us to recover the entire geometry of Ar, via projections to
the subcomplexes Y < X and through the nesting, orthogonality and transversality relations
defined above.

Since the nesting and orthogonality relations for a right-angled Artin group are intrinsic
to the defining graph I', it is sensible to attempt to generalise this hierarchichally hyperbolic
structure to arbitrary graph products. It is important to note, however, that arbitrary
graph products cannot be hierarchically hyperbolic, since we have no control over the vertex
groups. For example, the vertex groups could be copies of Out(Fs), which is known not
to be hierarchically hyperbolic [BHS19]. However, this is the only roadblock. Specifically,
we show that graph products are relatively hierarchically hyperbolic, that is, graph products
admit a structure satisfying all of the axioms of hierarchical hyperbolicity with the exception
that the spaces associated to the nesting-minimal sets (the vertex groups) are not necessarily

hyperbolic.

Theorem A (|[BR20, Theorem 4.22|). Let I be a finite simplicial graph, with each vertex v
labelled by a non-trivial finitely-generated group G,. The graph product Gr is a hierarchically

hyperbolic group relative to the vertex groups.

The notion of relative hierarchical hyperbolicity was originally developed by Behrstock,
Hagen and Sisto in [BHS19| and is explored further in [BHS17a]. Despite the lack of hyper-
bolicity in the nesting-minimal sets, many of the consequences of hierarchical hyperbolicity
are preserved in the relatively hierarchically hyperbolic setting. In particular, Theorem A
implies the graph product Gr has a Masur and Minsky style distance formula and an acylin-
drical action on the nesting-maximal hyperbolic space; see Corollaries 4.2.23 and 4.2.24.

Another way of asserting control over the vertex groups is by replacing the word metric
on Gr with the syllable metric, which measures the length of an element g € Gr by counting
the minimum number of elements needed to express g as a product of vertex group ele-

ments. This has the effect of making all vertex groups diameter 1, and therefore hyperbolic.
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The syllable metric on a right-angled Artin group was studied by Kim and Koberda as an
analogue of the Weil-Petersson metric on Teichmiiller space (the Weil-Petersson metric is
quasi-isometric to the space obtained from the mapping class group by coning off all cyclic
subgroups generated by Dehn twists) [KK14|. Kim and Koberda produce several hierarchy-
like results for the syllable metric on a right-angled Artin group with triangle- and square-free
defining graph, including a Masur and Minsky style distance formula and an acylindrical ac-
tion on a hyperbolic space. This inspired Behrstock, Hagen and Sisto to ask if the syllable
metric on a right-angled Artin group is a hierarchically hyperbolic space [BHS19]. We give
a positive answer to this question, not just for right-angled Artin groups but for all graph

products.

Corollary B (|[BR20, Corollary 4.25]). Let I' be a finite simplicial graph, with each vertex
v labelled by a non-trivial group G,. Then the graph product Gy endowed with the syllable

metric is a hierarchically hyperbolic space.

To prove Theorem A and Corollary B, we utilise techniques developed by Genevois and
Martin in [Genl7, GM18| which exploit the cubical-like geometry of a graph product when
endowed with the syllable metric. This allows us to adapt proofs from the right-angled Artin
group case, which rely heavily on geometric properties of cube complexes. While the syllable
metric does not appear in the statement of Theorem A, it is an integral part of the proof,
acting as a middle ground where geometric computations are performed before projecting to
the associated hyperbolic spaces. This also allows Theorem A and Corollary B to be proved
essentially simultaneously.

Our primary application of Theorem A is showing that a graph product of hierarchically
hyperbolic groups is itself hierarchically hyperbolic. This gives a positive answer to another

question of Behrstock, Hagen, and Sisto [BHS19, Question D].

Theorem C (|[BR20, Theorem 5.1]). Let I' be a finite simplicial graph, with each vertex v

labelled by a non-trivial group G,. If each G, is a hierarchically hyperbolic group, then the
7



graph product Gr is a hierarchically hyperbolic group.

Berlai and Robbio have established a combination theorem for graphs of groups that
implies Theorem C when the vertex groups satisfy some natural, but non-trivial, additional
hypotheses [BR18|. For the specific case of graph products, Theorem C improves upon
Berlai and Robbio’s result by removing the need for these additional hypotheses, as well as
providing an explicit description of the hierarchically hyperbolic structure in terms of the
defining graph.

We also use our relatively hierarchically hyperbolic structure for graph products to answer
two questions of Genevois about a new quasi-isometry invariant for graph products of finite
groups called the electrification of Gr. Graph products of finite groups form a particularly
interesting class, as they include right-angled Coxeter groups and are the only cases where the
syllable metric and word metric are quasi-isometric. Genevois defines the electrification E(I")
of a graph product of finite groups to be the graph whose vertices correspond to elements
of Gr, and where g,h € Gr are joined by an edge in E(T') whenever g7'h € Gy < Gr
and A is a minsquare subgraph of I', that is, a minimal subgraph that contains opposite
vertices of a square if and only if it contains the whole square. Motivated by an analogy
with relatively hyperbolic groups, Genevois proved that any quasi-isometry between graph
products of finite groups induces a quasi-isometry between their electrifications, and used
this invariant to distinguish several quasi-isometry classes of right-angled Coxeter groups
[Genl19b]. Geometrically, the electrification sits between the syllable metric on Gr and the
nesting-maximal hyperbolic space in our hierarchically hyperbolic structure on Gr. We
exploit this situation to classify when the electrification has bounded diameter and when it

is a quasi-line, answering Questions 8.3 and 8.4 of [Gen19b].

Theorem D ([BR20, Theorems 5.14, 5.16]). Let Gr be a graph product of finite groups and

let E(T") be its electrification.

1. E(I') has bounded diameter if and only if I' is either a complete graph, a minsquare
8



graph, or the join of minsquare graph and a complete graph.
2. E(T') is a quasi-line if and only if Gr is virtually cyclic.

As a final application of Theorem A, we give a new proof of Meier’s classification of

hyperbolicity of graph products [Mei96].

1.1.2 Almost hierarchical hyperbolicity implies hierarchical hyper-
bolicity

The concept of an almost hierarchically hyperbolic space was introduced by Abbott, Behr-
stock, and Durham as a generalisation of hierarchical hyperbolicity [ABD21]. This a priori
broader class of spaces is obtained by relaxing the container axiom, which requires that for
each element I in a hierarchically hyperbolic structure & there is a corresponding element
of & which contains everything orthogonal to W.

The proof of Theorem C requires the hierarchically hyperbolic structures of the vertex
groups to be stitched into the fabric of the relatively hierarchically hyperbolic structure given
by Theorem A, by first removing the nesting-minimal domains in the relative structure and
then replacing them with the structures of the vertex groups. This causes one notable
problem, however; this new structure does not satisfy the container axiom, providing us only
with an almost hierarchically hyperbolic structure.

In Chapter 3 we fix this problem by showing that any almost hierarchically hyperbolic
structure can be upgraded to a genuine hierarchically hyperbolic structure by adding a

collection of dummy domains to serve as containers.

Theorem E (|[ABD21, Theorem A.1]). Any almost hierarchically hyperbolic space can be

endowed with the structure of a hierarchically hyperbolic space.

This allows us to complete the proof of Theorem C, while also streamlining proofs in

[ABD21]| by removing the need to navigate the subtleties of almost hierarchical hyperbolicity.
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1.1.3 Non-positive curvature in graph braid groups

Given a topological space X, one can construct the configuration space C,(X) of n particles
on X by taking the direct product of n copies of X and removing the diagonal. Informally,
this space tracks the movement of the particles through X; removing the diagonal ensures
the particles do not collide. One then obtains the unordered configuration space UC,,(X) by
taking the quotient by the action of the symmetric group on the coordinates of X™. Finally,
the braid group B, (X) is defined to be the fundamental group of UC,(X).

Braid groups have been a popular object of study since they were first introduced by
Artin in 1926 [Art26]. Originally, these were studied geometrically as knots; see Figure 1.2.
One can obtain the configuration space interpretation from this geometric model by taking
horizontal cross-sections, each of which gives an arrangement of particles on a disc. Each
cross-section can be thought of as a snapshot in time, tracking the locations of the particles

as they weave between each other. This configuration space approach was first introduced

by Fox [Fox62].

Figure 1.2: A 3-braid.

Classically, the space X is taken to be a disc, as in the above example. However, one may
also study braid groups of other spaces. Taking X to be a manifold, Birman showed that
braid groups are trivial in dimensions 3 and higher [Bir69, Theorem 1], therefore much work
on braid groups is concentrated on the case where X is a surface. However, by weakening
the manifold assumption, one also obtains interesting braid groups in dimension 1, namely
those of graphs.

These so-called graph braid groups were first developed by Abrams [Abr00]|, who showed
10



that they can be expressed as fundamental groups of non-positively curved cube complexes.
Results of Genevois show that these cube complexes are in fact special [Genl9al, in the sense
of Haglund and Wise [HWO08|. By applying Behrstock-Hagen—Sisto’s result that special cube
complexes are hierarchically hyperbolic, it follows that B, (") is a hierarchically hyperbolic
group, but this structure does not admit a nice description in terms of I'.

In Chapter 5, we construct an explicit hierarchically hyperbolic structure on a graph
braid group B,(I'). By expressing this structure in terms of the graph I', we are able
to characterise when a graph braid group exhibits other aspects of non-positive curvature
in terms of properties of I'. For example, we are able to apply Behrstock—-Hagen—Sisto’s
bounded orthogonality criterion [BHS17¢, Corollary 2.16| to classify hyperbolicity of graph

braid groups. A version of this theorem was first proved by Genevois [Gen19a, Theorem 4.1].
Theorem F. A graph braid group B, (") is hyperbolic if and only one of the following holds.
(1) n=1.

(2) n=2 and T does not contain two disjoint cycle subgraphs.

(8) n =3 and I" does not contain two disjoint cycle subgraphs, nor does it contain a disjoint

star subgraph and cycle subgraph.

(4) n =4 and T does not contain two disjoint subgraphs, each of which is a star or a cycle.

We are able to recover another theorem of Genevois [Genl9a| by applying Behrstock—

Hagen—Sisto’s criteria for acylindrical hyperbolicity in hierarchically hyperbolic groups.

Theorem G. Let T' be a finite connected graph. The graph braid group B, (') is either cyclic

or acylindrically hyperbolic.

Finally, we conjecture and partially prove a similar classification result for relative hy-
perbolicity of graph braid groups. This would answer a question of Genevois, generalising

his characterisation of toral relative hyperbolicity |[Genl19al. We achieve this by applying
11



Russell’s isolated orthogonality criterion [Rus20|, which allows one to determine if a hi-
erarchically hyperbolic space is relatively hyperbolic. Moreover, by adapting techniques
developed by Levcovitz in his classification of right-angled Coxeter groups |Lev20]|, we show
that one can simultaneously characterise when a graph braid group is strongly thick. In-
troduced by Behrstock-Drutu—-Mosher as an obstruction to relative hyperbolicity [BDMO09]
and further developed by Behrstock—Drutu [BD14], thickness measures the complexity of
coarse intersection patterns of non-negatively curved regions of a space. Thickness comes in
various orders, with each order being a quasi-isometry invariant. It is conjectured that all
hierarchically hyperbolic groups are thick or relatively hyperbolic; we seek to confirm this in
the case of graph braid groups.

Following |[Lev20]|, we introduce a sequence of hypergraphs which encode collections of
mutually orthogonal domains arising in the hierarchically hyperbolic structure of a graph
braid group B,(I'). By analysing connectedness properties of these hypergraphs via the
so-called hypergraph inder and applying Russell’s isolated orthogonality criterion, we claim
that it is possible to determine whether the graph braid group is relatively hyperbolic. By
construction, our hypergraphs show that any graph braid group which does not satisfy the
isolated orthogonality criterion is in fact strongly thick, and moreover we obtain an upper

bound on the order of thickness.
Conjecture H. Let I' be a finite connected graph and let n > 1, k > 0 be integers.

(1) If B,(T") has hypergraph index k, then B,(I") is strongly thick of order at most k. In

particular, B, (I") is not relatively hyperbolic.
(2) If B,(I') has hypergraph index oo, then B, (I") is relatively hyperbolic.

Behrstock and Drutu show that one can obtain a lower bound on the order of strong
thickness of a space by studying its divergence [BD14|. Levcovitz uses this to give a precise

characterisation of orders of strong thickness of right-angled Coxeter groups, employing

12



disc diagram techniques to measure divergence |[Lev20|. By adapting these techniques to
the setting of graph braid groups, we conjecture that the results of Conjecture H can be

strengthened even further.

Conjecture I. B,(I") has hypergraph index k if and only if it is strongly thick of order k.

1.2 QOutline of the thesis

In Chapter 2 we lay the foundations for the main results in Chapters 3, 4, and 5. We
begin with a quick overview of the basic concepts from coarse geometry (Section 2.1), in-
cluding a glossary of some important graph theoretic terms (Section 2.1.1), followed by a
brief summary of relative hyperbolicity and thickness (Section 2.2) as well as acylindrical
hyperbolicity (Section 2.3). We then give a more in-depth analysis of the geometry of cube
complexes (Section 2.4), including a new proof of hyperbolicity of the contact graph (Theo-
rem 2.4.16). Cube complexes are an important prerequisite for our approach to graph braid
groups (Section 2.5) and a motivation for the study of quasi-median graphs (Section 2.6).
Quasi-median graphs in turn form the basis for the geometry of graph products (Section
2.6.1), which are a generalisation of right-angled Artin groups (Section 2.4.1) and right-
angled Coxeter groups (Section 2.4.2). We conclude the chapter by formally introducing
the concept of hierarchical hyperbolicity (Section 2.7), which underpins the majority of the
results of this thesis. We spend some time developing this theory, reviewing methods of
detecting other forms of hyperbolicity in hierarchically hyperbolic spaces (Section 2.7.1) and
introducing two important variants—relative hierarchical hyperbolicity (Section 2.7.2) and
almost hierarchical hyperbolicity (Section 2.7.3)—as well as delving into the details of hi-
erarchically hyperbolic structures on certain CAT(0) cube complexes (Section 2.7.4), which
will be key to understanding hierarchically hyperbolic structures on both graph products

and graph braid groups.
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Chapter 3 is devoted primarily to the proof of Theorem E, showing that any almost
hierarchically hyperbolic structure can be promoted to a hierarchically hyperbolic structure.
We conclude the chapter with a description of how this result is applied in the paper of
Abbott, Behrstock, and Durham.

In Chapter 4 we set about proving our theorems on graph products. In Section 4.1, we
set up our proof of the relative hierarchical hyperbolicity of graph products by defining the
necessary spaces, projections, and relations. In Section 4.2, we show the spaces, projections,
and relations defined in Section 4.1 satisfy the axioms of a relative HHG (or non-relative HHS
in the case of the syllable metric). This completes the proofs of Theorem A and Corollary
B. Section 4.3 is devoted to applications of this hierarchically hyperbolic structure. We
start by proving graph products of HHGs are HHGs (Theorem C) in Section 4.3.1, which
requires the technical results shown in Chapter 3. In Section 4.3.2, we record our proof of
Meier’s hyperbolicity criteria and in Section 4.3.3, we classify when Genevois’ electrification
has infinite diameter and when it is a quasi-line, proving Theorem D.

Finally, Chapter 5 contains our results on graph braid groups. We spend Section 5.1
constructing an explicit hierarchically hyperbolic structure for graph braid groups, first by
studying the cubical structure and how it relates to properties of the graph (Section 5.1.1) and
then translating this into a hierarchically hyperbolic structure (Section 5.1.2). We then apply
this hierarchically hyperbolic structure in Section 5.2 to detect other forms of hyperbolicity.
In particular, we classify when a graph braid group is hyperbolic or acylindrically hyperbolic
(Section 5.2.1), proving Theorems F and G. We then introduce the notion of the hypergraph
index in Section 5.2.2 and use this to partially prove Conjecture H, which characterises when

a graph braid group is relatively hyperbolic or thick.
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Chapter 2

Background

Notation 2.0.1. We set the following conventions for the notation we shall use.
e Given a metric space X, B,(R) denotes the ball of radius R centred at the point x.

e Given a metric space X and a subspace A < X, Ng(A) denotes the closed R-

neighbourhood of the subspace A.

The identity element of a group is denoted e.

N denotes the positive integers.

The set of vertices of a graph I' is denoted V(I') and the set of edges is denoted E(I).

2.1 Coarse geometry

In this section we shall review some basic tools of geometric group theory which will be used
throughout this thesis. The first and foremost tool is the Cayley graph of a group, which is
the primary method of studying a group’s geometry. This graph allows one to put a natural
discrete metric on any finitely generated group. Due to the discrete nature of this form of
geometry, it is often referred to as coarse geometry.
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Definition 2.1.1 (Cayley graph, word metric). Let G be a group and let S be a generating
set for G. The Cayley graph Cay(G,S) of G with respect to S is the graph whose vertices
are the elements of GG, and where two vertices g and h are connected by an edge if and only
if g71h = s for some s € S U S~!. In this case, we label the edge by s. The word metric dg
on G with respect to S is the graph metric on Cay(G, S); that is, dg(g, h) is equal to the

shortest distance between the vertices g and h in Cay(G, S), where each edge has length 1.

The geometry of the Cayley graph Cay(G, S) is intimately related to algebraic properties
of the group GG. For example, the distance between two elements g, h € G in the word metric
ds is equal to the minimum number of elements required to express g~ 'h as a product of
elements of SUS™!. One must beware that a group can have many Cayley graphs, depending
on the choice of generating set, meaning this geometry is not fully determined by the choice
of group G. However, so long as these generating sets are finite, the distances in any two
Cayley graphs are equivalent up to a multiplicative and additive constant; we say the Cayley
graphs are quasi-isometric. By restricting ourselves to geometric properties of Cayley graphs
that are invariant under quasi-isometry, we therefore obtain genuine invariants of the group

itself.

Definition 2.1.2 (Coarsely Lipschitz, quasi-isometry). Let (X,dx) and (Y,dy) be metric
spaces and let L > 1, C' = 0. A function f : X — Y is said to be (L, C)—coarsely Lipschitz

if for all z, 2’ € X, we have

dy (f(2), f(2') < Ldx(2,2/) + C.

A function f: X — Y is an (L, C)—quasi-isometric embedding if for all z, 2’ € X, we have

%dx(x,x’) — C <dy(f(2), f(2") < Ldx(z,2") + C.

If in addition Y < Neg(f(X)), we say f is an (L, C)—quasi-isometry. Two metric spaces
16



(X,dx) and (Y, dy) are said to be quasi-isometric if there exists a quasi-isometry f : X —» Y

between them.

In light of this, the appropriate coarse geometric analogue of a geodesic is a quasi-geodesic,

defined as a quasi-isometric embedding of a closed interval I < R.

Definition 2.1.3 (Quasi-geodesic). Let X be a metric space. An (L, C)—quasi-geodesic in
X is an (L, C)—quasi-isometric embedding ~ : I — X for some closed interval [ < R. In
particular, if L = 1 and C' = 0 then 7 is a geodesic. We say X is an (L, C)—quasi-geodesic
space if for any two points z, 2’ € X there exists an (L, C')—quasi-geodesic v : [0,!] — X such

that v(0) = z and ~(I) = 2.
This leads to a natural coarse version of convexity.

Definition 2.1.4 (Quasi-convex). A subset A of a metric space X is (L, C')—quasi-convez if

any two points in A can be connected in No(A) by an (L, L)—quasi-geodesic.

Example 2.1.5. The following three examples of quasi-isometries will be critical to our

understanding of the coarse geometry of groups.

(1) The group Z™ with the word metric induced by its standard generating set is quasi-
isometric to Euclidean n—space. For this reason, we often refer to quasi-isometrically

embedded copies of Z" in a group G as flats in the group.

(2) A finitely generated group G is quasi-isometric to any finite index subgroup H < G. For
this reason, we shall often speak of a group wvirtually having a property. This simply

means there is a finite index subgroup which has this property.

(3) (Milnorfgvarc Lemma.) Let G be a group acting properly discontinuously and co-
compactly on a proper geodesic metric space X. Then G is finitely generated and

quasi-isometric to X. We say G acts geometrically on X.
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Note that the fact that any two Cayley graphs of a finitely generated group G are quasi-
isometric follows as a consequence of the Milnor-Svarc lemma, by considering the action of
G on these two metric spaces.

With the notion of quasi-isometry in mind, we can now begin producing geometric group
invariants by finding properties which are invariant under quasi-isometry. One such invariant
is a coarse version of hyperbolicity, originally introduced by Gromov in [Gro87] and now a

cornerstone of geometric group theory.

Definition 2.1.6 (0-hyperbolic). Let X be a (quasi-)geodesic space and let 6 > 0. We say
X is d-hyperbolic if every (quasi-)geodesic triangle in X satisfies the property that any side

is contained in the é—neighbourhood of the union of the other two sides.

Hyperbolic spaces have a number of nice properties. For example, hyperbolic spaces have

a natural notion of boundary.

Definition 2.1.7 (Gromov boundary). Let X be a proper geodesic hyperbolic space and
fix a point O € X. Define two geodesic rays 7; : [0,0) — X and v, : [0,00) — X with
71(0) = 72(0) = O to be equivalent if there exists some K > 0 such that dx(71(¢),12(t)) < K
for all ¢ = 0. Denote the equivalence class of a geodesic ray v by [y]. The Gromov boundary

0X of X is defined to be the set of equivalence classes 0.X = {[v]|~ is a geodesic ray in X}.

Given a group G acting on a hyperbolic space X, one can study the behaviour of orbits

of elements g € G.

Definition 2.1.8 (Loxodromic). An element g is said to be lozodromic if the map Z — X
defined by n — ¢"x is a quasi-isometry for some (equivalently, any) x € X. In particular,
the orbits of g in X form quasi-geodesics, with precisely two limit points in 0X. We say two

loxodromic elements g, h € G are independent if they do not share any limit points.
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2.1.1 Graph terminology

Graphs prove to be highly useful tools in geometric group theory, even outside of the specific
example of the Cayley graph, by giving us powerful ways of keeping track of combinatorial

data. As such, it shall be useful to review some concepts from graph theory.

Definition 2.1.9 (Simplicial). Let I be a graph. We say I' is simplicial if no two edges
connect the same pair of vertices and no edge both begins and ends at the same vertex.
That is, every edge of I' may be expressed uniquely as an unordered pair {v, w} of distinct

vertices of I' corresponding to its endpoints.

Definition 2.1.10 (Induced subgraph). Let I" be a graph and let A < I" be a subgraph of
I'. We say A is an induced subgraph of I' if the edges of A are precisely the edges of I' whose

endpoints are vertices of A.

Figure 2.1: The red square on the left is not an induced subgraph, as it does not contain the
diagonal edge. The subgraph on the right is an induced subgraph.

Definition 2.1.11 (Cycle, tree). Let I' be a graph. A cycle in T' is a sequence of distinct
vertices vy, ..., v, such that v; and v; 1 are connected by an edge for each 1 <17 < n, and v,
is connected to v; by an edge. A cycle also refers to the subgraph of I' given by the union

of these vertices and edges. We say I is a tree if it is connected and contains no cycles.

Definition 2.1.12 (Star graph). A connected graph IT" is a star graph if it consists of one

vertex of valence m > 3 and m vertices of valence 1.

19



Figure 2.2: A cycle and a star graph.

Definition 2.1.13 (Complete, clique). A simplicial graph T' is complete if every pair of
vertices of I' is connected by an edge. An induced subgraph A of a simplicial graph T' is

called a clique if A is a complete subgraph of T'.

Definition 2.1.14 (Star, link, and join). Let I" be a simplicial graph and A an induced
subgraph of T'. The link of A, denoted 1k(A), is the subgraph of T' induced by the set of
vertices of I' \\ A that are connected to every vertex of A. The star of A, denoted st(A), is
A U lk(A). We say A is a join if it can be written as A = Ay u Ay where A; and A, are
non-empty induced subgraphs of I' and every vertex of A; is connected to every vertex of

As. We denote the join of A; and Ay by Ay » Ay. In particular, st(A) is the join A *1k(A).

st(v)

Figure 2.3: The link and star of a vertex.

Generalising the idea that edges in a simplicial graph are represented by unordered pairs
of vertices, one can develop a notion of a hypergraph, which has ‘hyperedges’ consisting of

unordered collections of any number of vertices.

Definition 2.1.15 (Hypergraph). A hypergraph T is a set of vertices V(I') and a set of
hyperedges £(T"), where each hyperedge E € £(T) is a subset of V(T').
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2.2 Relative hyperbolicity and thickness

2.2.1 Relative hyperbolicity

There are many interesting and important classes of groups that are not hyperbolic in the
homogeneous sense of d—hyperbolicity, but do still exhibit some hyperbolic behaviour. One
of the first attempts to capture this was the notion of relative hyperbolicity, first introduced
by Gromov in his seminal paper and since improved upon by Bowditch, Farb, and others
[Gro87, Far98, Bowl12, DS05, Osi06]. Roughly, a group is relatively hyperbolic if it is §—
hyperbolic outside of some isolated collection of peripheral subgroups.

Although we shall mostly be using relative hyperbolicity as a black box, a definition
is included here for the sake of completeness. Note that there are a number of equivalent
definitions; see [Hrul0, Sis12] for surveys of these and proofs of their equivalence. The version

of the definition given below is due to Farb.

Definition 2.2.1 (Relatively hyperbolic; [Far98]). Let G be a finitely generated group with
Cayley graph I' and let P be a finite collection of finitely generated subgroups of GG. The
coned-off Cayley graph T' = f’(P) of G with respect to P is obtained from I' by adding a
vertex vyp for each coset gP of each subgroup P € P, and adding edges connecting v,p to
each vertex of gP in I'. The group G is hyperbolic relative to P if there exists some § > 0 such
that T is d—hyperbolic and the pair (G, P) satisfies the bounded coset penetration property,
defined below.

Definition 2.2.2 (Bounded coset penetration; [Far98]). Let G be a finitely generated group
with Cayley graph I' and let P be a finite collection of finitely generated subgroups of G.
A path w in I' is a word in the generators of G. By searching w for maximal subwords z
contained in cosets gP for P € P, one can obtain a path w of r by replacing subpaths given
by such subwords z with two edges connected to the corresponding cone point vyp. If w

passes through the cone point v,p, we say w penetrates the coset gP. If w is a geodesic of T,
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we say w is a relative geodesic of I'. If w is an L—quasi-geodesic of I, we say w is a relative
L—quasi-geodesic of I'. The path w is a path without backtracking if w never returns to a
coset that it penetrates.

The pair (G,P) satisfies the bounded coset penetration property if for all L > 1 there
exists a constant ¢ = ¢(L) so that for every pair u,v of relative L—quasi-geodesics without

backtracking and with the same endpoints, the following conditions hold.

(1) If u penetrates a coset gP but v does not penetrate gP, then u travels a I'-distance of

at most c in gP.

(2) If w and v both penetrate a coset gP, then the vertices of I' where u and v first enter gP
are at ['-distance at most ¢ from each other. Similarly, the vertices of I' where u and v

last exit gP are at distance at most ¢ from each other.

A classical example of a relatively hyperbolic group is the fundamental group of a com-
plete, finite-volume, cusped hyperbolic manifold. This is hyperbolic relative to its cusp sub-
groups [Far98, Theorem 4.11]. Other examples include free products of finitely-generated
groups and non-uniform lattices in rank 1 symmetric spaces.

Importantly, relative hyperbolicity is a quasi-isometry invariant property [Dru09, Theo-
rem 1.2]. In fact, relatively hyperbolic groups are quasi-isometrically rigid in the following

stronger sense.

Theorem 2.2.3 (Rigidity of relatively hyperbolic groups; [BDMO09, Theorem 4.8]). Let G
be a finitely generated group and suppose G is hyperbolic relative to a finite collection P
of finitely generated subgroups, none of which are relatively hyperbolic. If G' is a finitely
generated group quasi-isometric to G, then G’ is hyperbolic relative to some finite collection

P’ of finitely generated subgroups, each of which is quasi-isometric to some subgroup in P.

Remark 2.2.4. Although we concern ourselves primarily with relative hyperbolicity of

groups, a notion of relative hyperbolicity also exists for metric spaces in general; see e.g.
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[DSO05)].

2.2.2 Thickness and divergence

Thickness was introduced by Behrstock—Drutu—Mosher as an obstruction to relative hyper-
bolicity [BDMO09|, and further developed by Behrstock-Drutu [BD14|. Roughly, thickness
measures the complexity of coarse intersection patterns of non-negatively curved regions of

a space. We shall use the strong version of thickness, defined in [BD14].

Definition 2.2.5 (Strongly thick). A metric space X is strongly thick of order 0 if none of
its asymptotic cones have cut points and every point in X is uniformly close to a bi-infinite
uniform quasi-geodesic. In particular, X is strongly thick of order 0 if X is quasi-isometric
to a product of two infinite-diameter metric spaces, contains a bi-infinite quasigeodesic, and
admits a cocompact group action.

X is strongly thick of order at most n if there exist C' > 0, an index set I, and a collection

{P,}aer of quasi-convex subsets of X satisfying the following three conditions.
(1) (Thick pieces.) Each P, is strongly thick of order at most n — 1.
(2) (Coarse covering.) X < No(|or FPo)-

(3) (Thick chaining.) For each pair P,, P, there is a sequence P, = Py, P,..., P, = P

such that No(P;) n No(P;41) has infinite diameter for each 0 <i < k — 1.

Each order of thickness is a quasi-isometry invariant [BDM09, Remark 7.2]. In this
way, thickness and relative hyperbolicity may be used in tandem to aid in distinguishing

quasi-isometry classes of groups and spaces.

Remark 2.2.6 (The relatively hyperbolic-thick dichotomy). It is important to note that
there is not always a strict dichotomy between relative hyperbolicity and thickness (see

[BDMO09, Section 7.1]). However, in many cases, there is. For example, the dichotomy
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has been proven for mapping class groups, 3—manifold groups, and Artin groups [BDMO09|,

Teichmiiller space [BM08|, Coxeter groups [BHS17d|, and free-by-cyclic groups [Hagl19].

When studying groups, it is often more convenient to use the following algebraic version
of thickness. Note that algebraic thickness of order n implies metric thickness of order n, by

[BDMO09, Proposition 7.6].

Definition 2.2.7 (Strongly algebraically thick). A finitely generated group G is strongly
algebraically thick of order 0 if none of its asymptotic cones have cut points and every point
in (G is uniformly close to a bi-infinite uniform quasi-geodesic. In particular, G is strongly
algebraically thick of order 0 if it is quasi-isometric to a product of two infinite-diameter
metric spaces.

G is strongly algebraically thick of order at most n if there exists a finite index set I and a

collection {H, }aer of quasi-convex subgroups of G satisfying the following three conditions.

(1) (Thick pieces.) Each H, is strongly algebraically thick of order at most n — 1.

(2) (Coarse covering.) | J..; H, generates a finite-index subgroup of G.

ael

(3) (Thick chaining.) For each pair H,, H, there is a sequence H, = Hy, Hy,..., Hy =

H,, such that H; n H;,1 has infinite diameter for each 0 <7 < k — 1.

In practice, it can be difficult to show that a group or space has a specific order of
thickness; by virtue of the definition, we often initially only obtain an upper bound on the
order. To facilitate finding the exact order of thickness, it is often convenient to compute

the divergence of the group or space.

Definition 2.2.8 (Divergence). Let (X,dy) be a geodesic metric space, and let 0 < 6 < 1
and v = 0. Given a,b,c € X with dx(c,{a,b}) = r > 0, define div,(a,b,c;d) to be the
infimum of the lengths of paths in X connecting a to b and avoiding the ball B.(or — ). If
no such path exists, define div,(a,b,c;0) = co. The divergence function Div,(n;d) of X is

defined to be the supremum of all div,(a, b, ¢;0) with dx(a,b) < n.
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Behrstock and Drutu show that the rate of divergence gives a lower bound on the order

of strong thickness.

Theorem 2.2.9 (Divergence bounds thickness; [BD14, Corollary 4.17]). Let X be a geodesic
metric space. If the divergence Div.(x;0) is at least polynomial of order n + 1 for every

1 . .
0 <0 < z; and every v = 0, then X is strongly thick of order at least n.

2.3 Acylindrical hyperbolicity

Another generalisation of é—hyperbolicity is the notion of acylindrical hyperbolicity. This
version of hyperbolicity was developed by Osin [Osil6], who built upon ideas of Sela and

Bowditch to bring it to its current form [Sel97, BowO0§].

Definition 2.3.1 (Acylindrical). The action of a group G on a metric space X is acylindrical
if for all £ > 0, there exist R, N > 0 so that if z,y € X satisfy dx(x,y) > R, then there
are at most N elements g € G such that dy(x,¢9z) < E and dx(y,gy) < E. We say G is
acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic
space X by isometries. (An action is non-elementary if it has two independent loxodromic

elements.)
One notable consequence of acylindricity is the following classification due to Osin.

Theorem 2.3.2 (|Osil6, Theorem 1.1|). Let G be a group acting acylindrically on a hyper-

bolic space. Then G satisfies exactly one of the following.
(1) G has bounded orbits.
(2) G is virtually cyclic and contains a lozodromic element.

(8) G contains infinitely many independent loxodromic elements.
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2.4 Cube complexes

Definition 2.4.1 (Cube complex). Let n > 0. An n—cube is a Euclidean cube [—1,2]". A
face of a cube is a subcomplex obtained by restricting one or more of the coordinates to i%.
A cube complex is a CW complex where each cell is a cube and the attaching maps are given

by isometries along faces.

We will often refer to the O—cubes of a cube complex X as wvertices, the 1-cubes as edges,

and the 2—cubes as squares.

Definition 2.4.2 (Non-positively curved, CAT(0), cubical group). Let X be a cube complex.

The link link(v) of a vertex v of X is a simplicial complex defined as follows.
e The vertices of link(v) are the edges of X that are incident at v.

e n vertices of link(v) span an n—simplex if the corresponding edges of X are faces of a

common cube.

The complex link(v) is said to be flag if n vertices vy, ..., v, of link(v) span an n—simplex
if and only if v; and v; are connected by an edge for all i # j. A cube complex X is non-
positively curved if the link of each vertex of X is flag and contains no bigons (that is, no
loops consisting of two edges). A cube complex X is CAT(0) if it is non-positively curved
and simply connected. A group is said to be cubical if it acts geometrically on a CAT(0)

cube complex.

Henceforth, all the cube complexes we use shall be non-positively curved, unless other-
wise specified. The link condition tells us that a non-positively curved cube complex X is
determined by its 1-skeleton X, In general, we shall therefore work in this 1-skeleton,
where we use the graph metric, denoted dy. The resulting metric space is a median graph,

as shown in [Che00, Theorem 6.1].
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Figure 2.4: This 2-dimensional cube complex is not non-positively curved because the link
of the central vertex (shown in red) is not flag.

Definition 2.4.3 (Median graph). Let I" be a graph with graph metric d. The resulting
metric graph is a median graph if for any three distinct vertices u, v, w of I, there exists a

unique vertex m = m(u,v,w) such that

d(u,v) = d(u,m) + d(m,v),
d(v,w) = d(v,m) + d(m, w),

d(w,u) = d(w,m) + d(m,u).

The vertex m is the median of u, v, and w.

Many important properties of cube complexes may be proved from this combinatorial
point of view of median graphs; see [Che00, Section 6.2| for an overview of such arguments,
as well as their relation to the more geometric point of view of hyperplanes, which is the

perspective we shall take.

Definition 2.4.4 (Mid-cube, hyperplane, combinatorial hyperplane, carrier). Let X be a
cube complex. A mid-cube of a cube C' =~ [—%, %]" of X is obtained by restricting one of the
coordinates of C' to 0. Each mid-cube has two isometric associated faces of C, obtained by
restricting this coordinate to i% instead of 0. A hyperplane H of X is a maximal connected
union of mid-cubes. A combinatorial hyperplane associated to H is a maximal connected
union of faces associated to mid-cubes of H. The closed (resp. open) carrier of H is the

union of all closed (resp. open) cubes of X which contain mid-cubes of H.
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Convention 2.4.5. We will almost always be using the closed version of the carrier of a
hyperplane H, therefore we will refer to this version as simply the ‘carrier’ of H. We denote

this closed version of the carrier by N(H).

A result of Chepoi tells us that carriers and combinatorial hyperplanes form convex
subcomplexes of X [Che00, Proposition 6.6]. The combinatorial hyperplanes associated to

a given hyperplane are also ‘parallel’; in the following sense.

Definition 2.4.6 (Parallelism and separation). Let H be a hyperplane of a cube complex
X. We say that H is dual to an edge F of X if H contains a mid-cube which intersects F.
We say that H crosses a subcomplex Y of X if there exists some edge E of Y that is dual
to H. We say that H crosses another hyperplane H' if it crosses a combinatorial hyperplane
associated to H'. We say H separates two subcomplexes Y, Y of X if Y and Y’ are contained
in two different connected components of X ~\ H. Two subcomplexes Y, Y’ of X are parallel

if each hyperplane H of X crosses Y if and only if it crosses Y.

Parallelism of combinatorial hyperplanes can in fact be generalised to a much stronger

result which characterises parallelism of any convex subcomplexes.

Lemma 2.4.7 (|[BHS17b, Lemma 2.4]). Let K and K' be convex subcomplexes of a CAT(0)

cube complexr X. The following are equivalent.
(1) K and K' are parallel.

(2) There is a cubical isometric embedding i : K x [0,1] — X such that i(K x {0}) = K and
i(K x {l}) = K', and for each x € K, i({z} x [0,1]) is a geodesic segment in X whose

dual hyperplanes are precisely those separating K from K'.

Remark 2.4.8. Parallelism defines an equivalence relation on the edges of a cube complex
X. In particular, two edges are in the same equivalence class (or parallelism class) if and only

if they are dual to the same hyperplane. Therefore, one may instead consider hyperplanes
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of X to be parallelism classes of edges of X. One may also define an orientation H on a
hyperplane H by taking an equivalence class of oriented edges. In this case, we say that H

is dual to the oriented edges in this class.

Definition 2.4.9 (Osculation). We say H directly self-osculates if there exist two oriented
edges E, E; dual to H that have the same initial or terminal vertex but do not span a
square. We say two hyperplanes H;, Hy inter-osculate if they intersect and there exist dual
edges E1, Ey of Hy, Hy, respectively, such that £ and E5 share a common endpoint but do

not span a square. See Figure 2.5.

Figure 2.5: A directly self-osculating hyperplane and a pair of inter-osculating hyperplanes.

Definition 2.4.10 (Special). A non-positively curved cube complex X is said to be special

if its hyperplanes satisfy the following properties.

(1) Hyperplanes are two-sided; that is, the open carrier of a hyperplane H is homeomorphic

to H x (—3,3).
(2) Hyperplanes of X do not self-intersect.
(3) Hyperplanes of X do not directly self-osculate.
(4) Hyperplanes of X do not inter-osculate.

The following fact is an easy but noteworthy consequence of the above definitions.
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Fact 2.4.11. The universal cover of a non-positively curved cube complex is a CAT(0) cube
complex. In particular, the universal cover of a special cube complex is a CAT(0) cube

complex.

Conversely, a result of Haglund and Wise tells us that a CAT(0) cube complex is itself

special.
Proposition 2.4.12 ([HWO08, Example 3.3]). Any CAT(0) cube complex is special.

The hyperplanes of a CAT(0) cube complex X enjoy many useful properties beyond the
ones in the definition of ‘special’, as outlined below. We shall see in Section 2.7.4 that
these hyperplane properties translate into powerful geometric properties, as well as algebraic

properties of 71 (Y") in the case where X is the universal cover of a special cube complex Y.

Proposition 2.4.13 (Hyperplane properties; [Sag95, Che00, Hagl4]). Let X be a CAT(0)

cube complex.

(1) Any hyperplane H of X is itself a CAT(0) cube complex. Moreover, its hyperplanes are
of the form H n J, where J # H 1is a hyperplane of X.

(2) Each hyperplane separates X into two connected components.

(8) If H is a hyperplane of X, then its carrier N(H) and any combinatorial hyperplane

associated to H are convex in X.
(4) If H is a hyperplane of X, then each connected component of X ~\ H is convex in X.

(5) A continuous path v in XU is a geodesic if and only if v intersects each hyperplane at
most once. In particular, if v and y are two vertices of X, then dx(x,y) is equal to the

number of hyperplanes of X separating x and y.

(6) If two hyperplanes Hy and Hy cross, then there exists a unique pair of edges Ey, Ey dual

to Hy and Hs, respectively, such that Ey and Fy span a square of X.
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(7) Let K be a connected convexr subcomplex of X. Any pair of hyperplanes of X that cross
each other and also cross K must necessarily cross inside K (that is, the square given

by Property 6 is contained in K ).

Proof. Properties (1) and (2) are proved in [Sag95, Theorems 4.11, 4.10]. Property (3)
is shown in the proof of [Che00, Proposition 6.6]. Property (4) follows immediately from
Properties (2) and (5). Property (7) is given in [Hagl4, Lemma 2.13|.

Property (5) follows from convexity of combinatorial hyperplanes. Indeed, let v be a
geodesic in X and suppose a hyperplane H crosses v more than once. By orienting v, we
can order the edges of v that are dual to H. Let F and E’ be two consecutive dual edges
with respect to this order. Let x,y and 2’,7’ be the vertices of F and E’, respectively,
such that x, 2’ are contained in a combinatorial hyperplane H, and y,% are contained in a
combinatorial hyperplane H_. By convexity, the subsegment of v connecting = and =’ must
be contained in H, and the subsegment of v connecting y and 3’ must be contained in H_.
However, this implies that H, n H_ # (¥, contradicting two-sidedness of H.

Property (6) follows from Property (5). Indeed, suppose two hyperplanes H; and Hy of
X cross. Then there exists some edge E; dual to H; that is contained in a combinatorial
hyperplane associated to H,. By definition, every edge of a combinatorial hyperplane spans
a square with an edge dual to the associated hyperplane. Thus, there exists some edge E5
dual to H, that spans a square with F;. Moreover, by Property (5), H; cannot cross Hs
more than once, as it would have to cross a combinatorial hyperplane and thus a geodesic

more than once. Therefore, the edges £; and Fy must be unique. O

As discussed in [BHS17b, Section 2.1], CAT(0) cube complexes admit projections to
convex subcomplexes, which satisfy particularly nice geometric properties, as summarised

below. We call such projections gate maps.

Proposition 2.4.14 (Gate map; [BHS17b, Section 2.1|). Let X be a CAT(0) cube complez.

For each conver subcomplex K < X, there exists a map gx : X — K satisfying the following
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properties.

(1) Forallz,y € X, dx(gk(2), 9k (y)) < dx(z,y).
(2) For all x € X, gi(x) is the unique vertex of K such that dx(z, gk (z)) = dx(z, K).
(3) Any hyperplane of X that separates x from g (x) separates x from K.

(4) If x,y € X and H is a hyperplane of X separating gk () and gk (y), then H separates
x and y, so that x and g (x) (resp. y and gx(y)) are contained in the same connected

component of X \ H.

Another important tool in the study of CAT(0) cube complexes is the contact graph, a
structural invariant originally introduced by Hagen [Hagl2| which encodes the hyperplane
structure of a cube complex while ignoring the CAT(0) geometry. A number of coarse
properties of cube complexes can be inferred from simple properties of the contact graph; in
fact, we will see in Section 2.7.4 that the contact graph plays an important role in developing

hierarchically hyperbolic structures for CAT(0) cube complexes.

Definition 2.4.15 (Contact graph). Let X be a CAT(0) cube complex. The contact graph
of X, denoted Cy(X), is the simplicial graph whose vertex set is the set H of hyperplanes

of X, and where two vertices Hy, Hy € H are connected by an edge if the (closed) carriers

N(H,), N(H,) intersect. We say that Hy; and Hy contact.

One key property of the contact graph is that it is 6—hyperbolic. In fact, Hagen showed it
is a quasi-tree [Hagl4, Theorem 4.1|. Below, we give a simple alternate proof of hyperbolicity

of Cy(X), relying only on the hyperplane properties of CAT(0) cube complexes detailed

3

above. In particular, we obtain an explicit hyperbolicity constant of § = 3.

Theorem 2.4.16 (The contact graph is hyperbolic). Let X be a CAT(0) cube complex. The

contact graph Co(X) is 2-hyperbolic.
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Proof. Let x,y, z € Cy(X) be three distinct points, and let 7y, 72, v3 be three Cy(X )—geodesics
connecting the pairs {y, z}, {2z, 2}, and {z,y}, respectively. Without loss of generality, we
may assume x,y, z are vertices of Cy(X). Indeed, if x lies in the interior of an edge e, then
the geodesic triangle A = 1 U 75 U y3 must contain at least one endpoint of e. If A contains
both endpoints of e, then = may be replaced with one of the endpoints without affecting A,
since Cp(X) is a graph. If A contains only one endpoint v of e, then the path v U 2 U 73
backtracks at the point x. Thus, we may replace x with v to obtain a new geodesic triangle
A’ that is d—hyperbolic if and only if A is d—hyperbolic.

The points xz,y, z therefore correspond to hyperplanes H,, H,, H. of X. Moreover, the
geodesics 71,72,73 correspond to minimal-length sequences H, = H{,...,H" = H,, H, =
H;,...,Hy® = H,, H, = Hs,...,H}® = H, of hyperplanes of X such that each pair of
consecutive hyperplanes has intersecting carriers. We wish to show that the geodesic triangle
Ais %fslim, that is, each of the geodesics ; is contained in the gfneighbourhood of the other
two geodesics. Let p be a point on v3. We wish to show that p is within a distance of g of
some point on vy U .. It is sufficient to assume p is a vertex of 3 and show that p is within
a distance of 2 of some vertex of v; U 7. In particular, it suffices to show there exists some
hyperplane H that crosses both H, and Hf for some i € {1,2} and j € {1,...,n;}, where H,

is the hyperplane of X corresponding to the vertex p of Cy(X).

Claim 2.4.17. There exists a hyperplane H of X that crosses both H, and Hij for some

ie{l,2} and j € {1,...,n;}.

Proof of claim. Consider the hyperplanes H{,... , H* = H),... Hy*> = H} ... Hy* = H{
corresponding to the vertices of the geodesic triangle A. We say two hyperplanes Hl-j , H! are
adjacent if the corresponding vertices are adjacent in A; that is, if i = k and |j — | = 1, or
ifi=1,7j=n,k=21l=1ori=2 j=ny, k=3, l=1ori=3,7=n3, k=1,1=1.
In particular, if two hyperplanes are adjacent then their carriers intersect. For each pair

of adjacent hyperplanes Hf , HL, pick a vertex g € N (Hj ) N N(H}). We obtain a sequence
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Qs Q= 052 = q3,...q3° = qi of vertices of X. We say qf and ¢} are adjacent
if the corresponding hyperplanes are adjacent. We can then connect pairs of adjacent qg
with geodesics in N(H?), by convexity of carriers (Proposition 2.4.13(3)). Let 8/ be the
geodesic from qf to qf *1 and denote the geodesic contained in N(H,) by /,. The union of

the geodesics Bf forms a loop § in X; see Figure 2.6.

H, = H" = H)}
1

_mom (o8
H, = Hj = H; "‘lﬂab Bp S
3 Q;lz H, :H‘%

1

Figure 2.6: The geodesic triangle A in Cy(X) gives a loop in X constructed from the corre-
sponding hyperplanes. We wish to show there is a hyperplane H that crosses both H, and
some H; for i =1 or 2.

Suppose H, = H}, so that 8, = 8. Note that since £} is contained in N(H.), all edges
of L are either dual to H} or contained in a combinatorial hyperplane associated to H:. Let
& ={FEy,...,E,} be the edges of 5 that are not dual to Hg for j =1—1,1,1+ 1 and such
that for each k, the maximal-dimensional cube of N (H}) containing Ej does not contain any
edges of N(HL™") or N(HL™). Furthermore, suppose the edges Ej are ordered according to
the orientation of 8. Let Hj, be the hyperplane dual to Ej. Since all of the edges Ej are

contained in a combinatorial hyperplane associated to H}, it follows that Hj, crosses H} for
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all k. It remains to show that there exists some k such that Hj, also crosses some H? for
i€ {1,2}. It suffices to show that Hj, crosses some 3/ for i € {1,2}.

First consider H;. Since H; separates X into two connected components (Proposition
2.4.13(2)) and H; is dual to an edge of the loop S, it follows that H; must also be dual
to another edge of #. Furthermore, since each hyperplane crosses each geodesic at most
once (Proposition 2.4.13(5)), H; must cross some (3 # (4. If i = 1 or 2, then we are done.
Suppose therefore that i = 3 and 7 # [. We then break our analysis down into the following
cases.

Case 1: j <l—3 or j > [+2. Note that because F is the first edge of £, it follows that
N(H,) must contain a vertex of N(HY ™) n N(H}); that is, H, contacts H.'. Therefore, if
J =1+ 2, then we obtain a sequence of contacting hyperplanes H é_l, Hy, H g which is shorter
than the sequence Hé_l, HL ..., Hg. If j <1 — 3, then we obtain a sequence of contacting
hyperplanes HY, Hy, Hg which is shorter than the sequence HY, Hy ™', ..., Hg. In both cases,
this contradicts our assumption that ~3 is a geodesic in Cy(X). Therefore, [ —2 < j <1+ 1.

See Figure 2.7.

Figure 2.7: If H; crosses Hg for j = | + 2 then this creates a shortcut in the contact graph,
as H, contacts both Hy ™! and Hi™2
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Case 2: j = [ — 1. Recall that N(H,) contains a vertex v of N(Hy ') n N(H.). Let
E be the edge dual to H; containing v, and let £’ be the edge dual to H.™' containing
v. Note that FE is contained in N(H}), and E is contained in the same cube as E;. If F
and E’ span a square, then F is also contained in N (Hé_l), contradicting our assumption
that the maximal-dimensional cube of N(H}) containing E; does not contain any edges of
N(HSY) or N(HL™). On the other hand, if £ and E’ do not span a square then H; and
HL™" inter-osculate, contradicting our assumption that X is CAT(0) (and therefore special

by Proposition 2.4.12); see Figure 2.8. Therefore, j # [ — 1.

Figure 2.8: If H, crosses H, ' then H, and H. ' inter-osculate.

Case 3: j =1+ 1. Suppose £ = {E;}. Because F is the last edge of &, it follows that
N (H;) must contain a vertex v of N(HL)nN(HL™). Let E be the edge dual to H; containing
v, and let E’ be the edge dual to Hi™' containing v. Note that F is contained in N (H%), and
E' is contained in the same cube as F;. If £ and E’ span a square, then F is also contained
in N(HY™), contradicting our assumption that the maximal-dimensional cube of N(HY)
containing E; does not contain any edges of N(H.™) or N(HL™). On the other hand, if
and £’ do not span a square then H; and H.! inter-osculate, contradicting our assumption
that X is special. Thus, we may assume that £ contains more than one edge. In this case,
we have a loop in Cy(X) given by the contacting hyperplanes H, H é“, H;. We can therefore

construct a loop a in X in a similar manner to f3; pick vertices w; in N(H;) n N(H), wy in
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N(HY) n N(HY™), and ws in N(HY™) n N(H;) and connect them via geodesics aq, as, as
in N(HL), N(HY™), N(H;). Moreover, without loss of generality we may assume that w,
lies on 3%, wy = ¢4, ws lies on AL, and oy < B, ay < B4 see Figure 2.9. Consider
the hyperplane Hs, which is dual to an edge of o;. Note that Hs must cross another edge
of a by Proposition 2.4.13(2). Further, Hy cannot cross another edge of a; by Proposition
2.4.13(5) and H, cannot cross aj since this would imply Hy and H; inter-osculate. Thus,
H, crosses an edge of as. We may repeat this analysis on each of the hyperplanes Hj in
turn, noting that Hj either crosses oy a second time (contradicting Proposition 2.4.13(5)),
or crosses Hj_; (causing an inter-osculation), or crosses ay. We conclude that Hj must

cross ap for all k. However, if H,, crosses oy then this causes H,, and Hé“ to inter-osculate,

contradicting specialness of X. Therefore, we must have j # [ + 1.

Figure 2.9: If H; crosses Hé“ then we can analyse the behaviour of hyperplanes crossing
the new loop a.

Case 4: H; does not exist. We must also consider the case that the collection £ is
empty; that is, all edges of 3} are either dual to some H§ with j =1—1,1,or [ + 1, or are
contained in a maximal-dimensional cube of N(H}) that also contains an edge of N(H.™) or
N(HL™). In this case, either Hi™' and HL™' contact (contradicting s being a geodesic) or
H! separates the endpoints of 5} and we can repeat the above case analysis for HY; see Figure
2.10. This time, the case of j = [ — 2 is ruled out too since H} contacts H:™. Therefore, H}

must cross Hij for i € {1,2}, concluding our argument.
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Figure 2.10: If H; does not exist, then H. must cross Hf for i =1 or 2.

Notice that if H; exists, the only case that does not result in a contradiction is therefore
when j = [ — 2. That is, H; crosses Hé’Q. Moreover, each Hj contacts Hj_;. Thus, by
inducting on k and repeating this case analysis with Hj_; in place of H.™', we see that
each Hj either crosses some Hl-j with ¢ € {1,2}, concluding the proof, or crosses H§_2.
Furthermore, E,, is the last edge of £, so N(H,) must share a vertex with N(H."); that
is, H, contacts Hy™. Thus, if H, crosses Hi? then we obtain a sequence of contacting
hyperplanes Hé“, H,, H§_2 which is shorter than the sequence Hé“, H!, Hé_l, H§_2. This
contradicts our assumption that 73 is a geodesic in Cy(X). Hence, H,, cannot cross H. 2 and

so there must exist some £ such that Hj crosses Hij for some i € {1,2}. See Figure 2.11. O

Figure 2.11: If H, crosses H§’2 then this creates a shortcut in the contact graph, as H,
contacts both H4™ and H.™2.

This concludes the proof of Theorem 2.4.16. O
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2.4.1 Right-angled Artin groups

Right-angled Artin groups form one of the foundational examples of cubical groups.

Definition 2.4.18 (Right-angled Artin group). Let ' be a finite simplicial graph. The

right-angled Artin group Ar is defined as

Ar =(V(I) | [v,w] = eV {v,w} e E(')).

We call T' the defining graph of Ar.

A right-angled Artin group may be expressed as the fundamental group of a cube complex

called the Salvetti complex, constructed as follows.

Definition 2.4.19 (Salvetti complex). The Salvetti complex Sy of the right-angled Artin

group Ar is the cube complex defined as follows.
e St has a single vertex.
e Sr has an edge F, for each vertex v of I'.
e Edges F,,, ..., E,, span an n—cube if vy,..., v, span an n—clique of T".

Note that since Sr has just a single vertex, all edges of Sr must form loops and each
n—cube is an n—torus. It therefore follows immediately that Ar is the fundamental group of
Sr. Moreover, Sr is a special cube complex (see [HWO08, Example 3.3]). In fact, one can
show that any special cube complex X embeds in the Salvetti complex of some right-angled
Artin group Ar via a local isometry [HWO08, Theorem 1.1], and therefore 7 (X) embeds in
Arp itself.

Theorem 2.4.20 (|[HWO08, Theorem 1.1]). Let X be a special cube complex. Then m (X)

embeds in a right-angled Artin group.
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Note that if I' is disconnected, then Ar can be expressed as a free product of the right-
angled Artin groups defined on each of the connected components of I'. In particular, Ar is
hyperbolic relative to these free factors. On the other hand, if I' splits as a join, then Ar
splits as a direct product, where the factors are the right-angled Artin groups defined on the
components of the join. In this case, Ar is thick of order 0.

Behrstock—Drutu—Mosher go further by showing that if I" is connected and has at least 2
vertices, then Ar is thick of order at most 1 [BDMO09, Corollary 10.8]. Moreover, Behrstock
and Charney show that if I' also does not split as a join, then the divergence of Ar is at
least quadratic [BC12, Corollary 4.8]. Combining these two results, we have a complete

characterisation of relative hyperbolicity and thickness in right-angled Artin groups.

Theorem 2.4.21 (Characterisation of relative hyperbolicity and thickness in right-angled
Artin groups; [BDMO09, Corollary 10.8|,[BC12, Corollary 4.8|). Let T be a finite simplicial

graph with at least 2 vertices.

o [f T' is disconnected, then Ar is freely decomposable, and in particular is hyperbolic

relative to its free factors.
o IfT splits as a join, then Ar is strongly thick of order 0.

o Otherwise, Ar is strongly thick of order 1.

2.4.2 Right-angled Coxeter groups

By taking the definition of a right-angled Artin group and adding extra relations that require

all generators to have order 2, one obtains a right-angled Coxeter group.

Definition 2.4.22 (Right-angled Coxeter group). Let I" be a finite simplicial graph. The

right-angled Coxeter group Wr is defined as

Wr =V D) | [v,w] =eV {v,w}e BET), v*=eV¥ve V(D).
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Right-angled Coxeter groups form another salient example of cubical groups. This time,

their cubical structure is given by the Davis complex.

Definition 2.4.23 (Davis complex). The Davis complez ¥r of the right-angled Coxeter

group Wr is the cube complex defined as follows.

e The 1-skeleton of X is the Cayley graph of Wr. Thus, each edge of Y is labelled by

a vertex of I'.

e Pairwise adjacent edges Ei,..., F, span an n—cube if they are labelled by distinct

vertices vq, ..., v, which span an n—clique of IT".

The Davis complex Y¥r is a CAT(0) cube complex upon which Wt acts geometrically
[Dav08|. It may in some sense be considered to be analogous to the universal cover of the
Salvetti complex in the right-angled Artin group case; indeed, Haglund and Wise show that
right-angled Coxeter groups have a finite-index subgroup which is the fundamental group of a
special cube complex [HW10]. Furthermore, by studying these two CAT(0) cube complexes,
Davis and Januszkiewicz show that every right-angled Artin group can be realised as a

finite-index subgroup of a right-angled Coxeter group.

Theorem 2.4.24 (|[DJ00|). For every right-angled Artin group there exists a right-angled

Cozeter group which contains it as a subgroup of finite index.

One immediate consequence of this theorem is that the spectrum of possible rates of
divergence for right-angled Coxeter groups must at the very least contain those of right-
angled Artin groups. Behrstock and Charney’s results therefore tell us that there exist
right-angled Coxeter groups with linear, quadratic, and infinite divergence [BC12, Corollary
4.8].

Levcovitz takes this further, obtaining a complete classification of divergence in right-

angled Coxeter groups, as well as a classification of relative hyperbolicity and thickness akin
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to Theorem 2.4.21 [Lev20, Theorem A, Corollary BJ. This is achieved by studying a graph

invariant called the hypergraph index.

Definition 2.4.25 (Hypergraph index). Let I' be a finite simplicial graph, and let A be a
subgraph of I which splits as a join A = Ay x A,. We say A is a wide subgraph if A; and
Ay each contain two non-adjacent vertices. We say A is a strip subgraph if A; consists of
two non-adjacent vertices and A, is a clique. Let ® be the collection of all maximal wide
subgraphs of I and let ¥ be the collection of all maximal strip subgraphs.

Inductively define a collection of hypergraphs A; = A;(T") as follows. Let Ay be the
hypergraph with vertex set V(I') and hyperedge set {V(A)|A € & u ¥}. For each i > 0,
define an equivalence relation =; on the hyperedges of A; by setting £ =; E' for E, E' € £(4;)
if there exists a sequence of hyperedges E = E1, Fs, ..., E, = E' in £(A;) such that for each
1 <j<mn, E; nE;; contains a pair of vertices which are non-adjacent in I'. Now define
A, 41 to be the hypergraph with vertex set V(I') and where E < V(T') is a hyperedge of A;,4
if and only if £ = E; U --- U E,, for some maximal collection {F1,..., E,,} of =;—equivalent
hyperedges of A;.

We define the hypergraph index of I' to be the smallest integer k£ > 0 such that there exists
a hyperedge E € £(Ag) with £ = V(I'). If no such k exists, then we say the hypergraph

index of I is 0.

Theorem 2.4.26 (Characterisation of relative hyperbolicity and thickness in right-angled

Coxeter groups; |Lev20, Theorem A, Corollary B|). Let " be a finite simplicial graph.

o If T has infinite hypergraph index, then Wr is relatively hyperbolic. Moreover, Wr has

exponential divergence if it is one-ended, and infinite divergence otherwise.

o IfT" has hypergraph index k = 0, then Wr is strongly thick of order k and has polynomial

divergence of degree k + 1.
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2.5 Graph braid groups

In this section we introduce graph braid groups and show they can be expressed as funda-
mental groups of special cube complexes.

Consider a finite collection of particles lying on a finite metric graph I'. The configuration
space of these particles on I is the collection of all possible ways the particles can be arranged
on the graph with no two particles occupying the same location. As we move through the
configuration space, the particles move along I', without colliding. If we do not distinguish
between each of the different particles, we call this an unordered configuration space. A graph

braid group is the fundamental group of an unordered configuration space. More precisely:

Definition 2.5.1 (Graph braid group). Let I' be a finite graph, and let n be a positive

integer. The topological configuration space C*P(T') is defined as
CYP(T) =™~ D™P,

where D'P = {(xy,...,x,) € I™ | 2; = x; for some i # j}. The unordered topological

configuration space UCEP(T') is then defined as
UC»(I) = CP(I) /S,

where the symmetric group S, acts on C'°P(T") by permuting its coordinates. We define the

graph braid group B, (T, S) as
B,(T',S) = m(UCPP(T), S),

where S € UC!P(T") is a fixed base point.

The base point S in our definition represents an initial configuration of the particles on

the graph I'. As the particles are unordered, they may always be moved along I' into any
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other desired initial configuration, so long as the correct number of particles are present in
each connected component of I'. In particular, if " is connected, then the graph braid group
B,(T",S) is independent of the choice of base point, and may therefore be denoted simply
B, (I"). The following result of Genevois shows that we can always express B,(I',S) as a
product of braid groups of connected graphs; thus, we will often be able to work under the

assumption that I' is connected without loss of generality.

Lemma 2.5.2 (|Genl9a, Lemma 3.5|). Let n > 1, let T be a finite graph, and suppose
I'=T,uls. Then
UCIP(T) = | |UCK(Ty) x UCKP,(T).
k=0

Moreover, if S € UCYP(T') has k particles in T'y and n — k particles in Ty, then
Bn(F, S) = Bk(Fl, SN Fl) X Bn,k(FQ,S M FQ),

where S N T'y (resp. S nT'y) denotes the configuration of the k (resp. n — k) particles of S

lying in Ty (resp. T's).

Note that in some sense, the space UC!P(T") is almost a cube complex. Indeed, T™
is a cube complex, but removing the diagonal breaks the structure of some of its cubes.
By expanding the diagonal slightly, we are able to fix this by ensuring that we are always

removing whole cubes.

Definition 2.5.3 (Combinatorial configuration space). Let I" be a finite graph, and let n be
a positive integer. For each x € I', the carrier ¢(x) of x is the lowest dimensional simplex of

I containing z. The combinatorial configuration space C,(I") is defined as
C,(I) =T"\ D,

where D = {(x1,...,2,) € I'™ | c(x;) N c(x) # & for some i # j}. The unordered combina-
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torial configuration space UC,(I") is then

The reduced graph braid group RB, (T, S) is defined as

RB,(I',S) = m(UC,(I), S),

where S € UC,(I') is a fixed base point.

Removing this new version of the diagonal tells us that two particles cannot occupy the
same edge of I'. This effectively discretises the motion of the particles to jumps between
vertices, as each particle must fully traverse an edge before another particle may enter.

Observe that C,,(I") is the union of all products c(x1) x - - - x ¢(z,,) satisfying c(x;) ne(z;) =
& for all ¢+ # j. Since the carrier is always a vertex or a closed edge, this defines an n—
dimensional cube complex, and moreover C,,(I") is compact with finitely many hyperplanes,
as I' is a finite graph. It follows that UC,(T") is also a compact cube complex with finitely
many hyperplanes. Indeed, we have the following useful description of the cube complex

structure, due to Genevois [Genl19a].
e The vertices of UC,(I") are the subsets S of V(I') with size |S| = n.

e Two vertices S; and Sy of UC,,(I") are connected by an edge if their symmetric difference
S1AS, is a pair of adjacent vertices of I'. We therefore label each edge E of UC,(I)

with a closed edge e of T'.

e A collection of m edges of UC,,(I') with a common endpoint span an m-—cube if their

labels are pairwise disjoint.

Abrams showed that if I has more than n vertices, then UC,,(I") is connected if and only

if I' is connected.
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Theorem 2.5.4 (|Abr00, Theorem 2.6]). Let I' be a finite graph. If T' has more than n

vertices, then UC,(T") is connected if and only if T is connected.

Furthermore, Abrams showed that if we subdivide edges of I sufficiently (i.e. add 2—valent
vertices to the middle of edges) to give a new graph I, then UCP(I") deformation retracts
onto UC,,(I") [Abr00, Theorem 2.1]. As UC!P(I”) does not distinguish vertices from other
points on the graph, we have UCP(T”) = UC'*?(T"), implying that B,(T",S) =~ RB,(I",S).
This allows us to consider B, (I',.S) as the fundamental group of the cube complex UC,,(I").

Prue and Scrimshaw later improved upon the constants in Abrams’ result to give the

following theorem [PS14, Theorem 3.2].

Theorem 2.5.5 ([Abr00|,[PS14]). Let n € N and let I' be a finite graph with at least n
vertices. The unordered topological configuration space UC!P(T") deformation retracts onto

the unordered combinatorial configuration space UC,(T") if the following conditions hold.
(1) Every path between distinct vertices of I' of valence = 3 has length at least n — 1.
(2) Every homotopically essential loop in I has length at least n + 1.

Remark 2.5.6. Note that Prue and Scrimshaw’s version of the theorem only deals with the
case where I' is connected. However, the disconnected case follows easily by deformation
retracting each connected component of UC,(I"), noting that Lemma 2.5.2 tells us that each
component can be expressed as a product of cube complexes UC,(A), where k < n and A is

a connected component of T'.

Another foundational result of Abrams states that the cube complex UC,(I") is non-
positively curved [Abr00, Theorem 3.10]. Furthermore, Genevois proved that UC,,(I") admits
a special colouring |Genl19a, Proposition 3.7]. We shall omit the details of his theory of special
colourings, and direct the reader to [Gen21] for further details. The key result is that a cube

complex X admits a special colouring if and only if there exists a special cube complex Y
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such that Y® = X® [Gen21, Lemma 3.2|. Furthermore, Genevois constructs Y by taking
X® and inductively attaching m-cubes C' whenever a copy of C(™~1 is present in the
complex, for m > 3; this ensures non-positive curvature of Y. Since in our case X = UC,(I)
is already non-positively curved, this means Y = X. Thus, B, (I") is the fundamental group
of the special cube complex UC,,(I").

In summary, we have the following result.

Corollary 2.5.7 (Graph braid groups are special; [Abr00, Gen19a, Gen21|). Let n > 1 and
let T' be a finite, connected graph. Then B, (I') = RB, ("), where I" is obtained from T' by
subdividing edges. In particular, B, (') is the fundamental group of the connected compact

special cube complex UC,,(I").

2.6 Quasi-median graphs

The notion of a quasi-median graph was originally introduced by Mulder in [Mul80] as
a generalisation of median graphs (see Definition 2.4.3) and further developed by Bandelt—
Mulder-Wilkeit [BMW94|. However, these were not studied in the context of geometric group
theory until recently, when Genevois explored their coarse geometry, drawing on analogies
with the cubical geometry of median graphs [Genl7|. In this section we shall study this
geometry, paying particular attention to its application to graph products.

There are numerous equivalent definitions of a quasi-median graph (see [BMW94, Theo-

rem 1]). We shall focus on the one given below.

Definition 2.6.1 (Quasi-median graph). A connected simplicial metric graph X is weakly

modular if it satisfies the following two conditions.

(1) (Triangle condition.) Let u,v,w be vertices of X such that v is adjacent to w and
both v and w are at distance k& > 2 from w. Then there exists a vertex x of X that is

adjacent to v and w and at distance k — 1 from u. See Figure 2.13.
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(2) (Quadrangle condition.) Let u, v, w, z be vertices of X such that both v and w are
adjacent to z and at distance k — 1 > 2 from u, and z is at distance k from u. Then
there exists a vertex x of X that is adjacent to v and w and at distance k — 2 from u.

See Figure 2.13.

We say X is quasi-median if it is weakly modular and does not contain K, or K34 as induced

subgraphs; see Figure 2.12.

<<

Figure 2.12: The graphs K, (left) and K3, (right).

Note that as a consequence of this definition, every cycle in a quasi-median graph is
contained in a union of 3—cycles and 4—cycles. Indeed, given an n—cycle with n > 5, one can
apply the triangle condition (if n is odd) or the quadrangle condition (if n is even) in order
to cover this n—cycle with cycles of strictly shorter length. By applying these conditions
inductively, one achieves the desired result; see Figure 2.13. Moreover, a result of Genevois
says that a quasi-median graph is a median graph precisely when it does not contain any

cycles of length 3.

(Y w (% z

Figure 2.13: The triangle and quadrangle conditions break up cycles into triangles and
squares.
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Proposition 2.6.2 (|Genl7, Corollary 2.92]). A graph is median if and only if it is quasi-

median and contains no 3—cycles.

In this way, the appropriate generalisation of a cube complex in the context of quasi-
median graphs is that of a prism complex. Just as a cube may be viewed as a product of
1-simplices, a prism is defined to be a product of simplices of any dimension. In the following
section, we shall explore the geometry of such complexes for the specific example of graph
products. For a more general treatment of this quasi-median geometry, the interested reader

is directed to [Genl7|.

2.6.1 Graph products

Definition 2.6.3 (Graph product). Let I be a finite simplicial graph with vertex set V(I)
and edge set E(I"), and with each vertex v € V(I') labelled by a non-trivial group G,. Then

the graph product Gr is the group

Gr = ( * )Gv>/<<[gv,gw] | 9v € G, Guw € Gu, {v,w} e E(T')).

veV (T
We call the G, the vertex groups of the graph product Gr.

Note that if all vertex groups of Gr are copies of Z, then Gr is the right-angled Artin
group with defining graph I', and if all vertex groups are copies of Z/27Z, then Gr is the
corresponding right-angled Coxeter group.

We wish to study the geometry of Gt by adapting the cubical geometry of right-angled
Artin groups. To this end, we will first need to eliminate any badly behaved geometry
occurring within vertex groups. We do this by replacing the usual word metric with the

syllable metric.

Definition 2.6.4 (Syllable metric on a graph product). Let Gt be a graph product. The

graph S(I') is the metric graph whose vertices are elements of Gr and where g, h € Gr are
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joined by an edge of length 1 labelled by g~ 'h if there exists a vertex v of I' such that
g 'h € G,. We denote the distance in S(T') by dsu(-,-) and say ds,(g,h) is the syllable
distance between g and h. When convenient, we will use |g|s,; to denote dgy (e, g) and call it

the syllable length of g.

Notice that all cosets of vertex groups have diameter 1 under the syllable metric, thus
trivialising their geometry. Therefore, when working with S(I"), instead of expressing an
element g € Gr as a word in the generators of G, it is more geometrically meaningful to

express g as a product of any elements of vertex groups.

Definition 2.6.5 (Syllable expressions). Let Gr be a graph product and g € Gr. If g =
S1...s, where each s; € G,, for some v; € V(I'), then we say s;...s, is a syllable expression
for g. If s1...s, is a syllable expression for g and n = dgy(e, g), then we say s;...s, is a
reduced syllable expression for g. In this case, n is the smallest number of terms possible for

any syllable expression of g.

A foundational fact about graph products is that any syllable expression can be reduced

by applying a sequence of canonical moves.

Theorem 2.6.6 (Reduction algorithm for graph products; [Gre90, Theorem 3.9]). Let Gr
be a graph product and g € Gr. If s1...s, is a reduced syllable expression for g and ty...t,,
15 a syllable expression for g, then ty...t,, can be transformed into si...s, by applying a

sequence of the following three mowves.
e Remove a term t; if t; = e.

e Replace consecutive terms t; and t;; belonging to the same vertex group G, with the

single term tit;11 € G,.

e FExchange the position of consecutive terms t; and t;,1 when t; € G, and t; 1 € G,, with

v joined to w by an edge in T.
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When each of the vertex groups of the graph product is finitely generated, Theorem 2.6.6
implies that the word length of any g € G will be the sum of the word lengths of the terms

in any reduced syllable expression for g.

Corollary 2.6.7 (Reduced syllable expressions minimise word length). Let Gr be a graph
product of finitely generated groups. For each v € V(I'), let S, be a finite generating set
for the vertex group G, and let |g| be the word length of g € Gr with respect to the finite

generating set S = Uvev(r) Sy. Forall g€ Gr, if s1...5s, is a reduced syllable expression for

g, then
g = Z |sil.
i=1
Proof. Let s;1...s, be a reduced syllable expression for g € Gr. There exist wy,...,w,, € S
such that |g| = m and ¢ = w;...w,. Since every element of S is an element of one of

the vertex groups of Gr, the product w; ... w,, is also a syllable expression for ¢g. Thus,
by applying a finite number of the moves from Theorem 2.6.6, we can transform wy ... w,,
into s;...s,. We can therefore write each s; as a product s; = we,1) ... Ws,(m,), Where
m; < m and o; is a permutation of {1,...,m}. Further, if i # k, then {0;(1),...,0;(m;)} N
{or(1),...,06(mi)} = &. Thus, D7, |s;] < D37 m; < m. However, m = [g| < ", |s;| by

definition, so |g| = >, |sil. O

Another critical consequence of Theorem 2.6.6 is that the terms in a reduced syllable
expression for an element of a graph product are well-defined up to applying the commutation
relation. This ensures that the following notions are well-defined for an element of a graph

product.

Definition 2.6.8 (Syllables and support of an element). Let Gr be a graph product of
groups and let g € Gpr. If s;...s, is a reduced syllable expression for g, then we call the
s; the syllables of g and use supp(g) to denote the induced subgraph of I' spanned by the

vertices {vy,...,v,}, where s; € G,,. We call supp(g) the support of g.
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Another hallmark feature of graph products is their rich collection of subgroups corre-

sponding to induced subgraphs of the defining graph.

Definition 2.6.9 (Graphical subgroups). Let Gr be a graph product with vertex groups
{G, :veV([')} and let A < T" be an induced subgraph. We use (A) to denote the subgroup
of Gr generated by {G, : v e V(A)}. We call such subgroups the graphical subgroups of Gr.

Note, each subgroup (A) is isomorphic to the graph product Gj.

Convention 2.6.10. Whenever we consider a subgraph A € I', we will assume that A is an

induced subgraph of T'.

Since the graphical subgroups are themselves graph products, we can also define the

syllable metric on them and their cosets.

Definition 2.6.11. Let Gr be a graph product, g € Gr, and A € I'. Let S(A) be the metric
graph defined in Definition 2.6.4 for the graph product (A), and let S(gA) denote the metric
graph whose vertices are elements of the coset g{A) and where gxr and gy are joined by an

edge of length 1 if x and y are joined by an edge in S(A).

Remark 2.6.12. Geodesics in S(I') between two elements k and h are labelled by the
reduced syllable forms of k~'h. The induced subgraph of S(I') with vertex set g(A) is
therefore convex and graphically isomorphic to S(gA) via the identity map. In particular,

the distance between two vertices k, h of S(gA) is dgyi(k, h).

Remark 2.6.13. The graph theoretic properties of subgraphs A of I' have important alge-
braic significance in the context of the graph product Gr itself. A join subgraph of I" generates
a subgroup of G which splits as a direct product, while (st(A)) is the largest subgroup of
Gt which splits as a direct product with (A) as one of the factors: (st(A)) = (A) x {Ik(A)).
Moreover, since every element of (A) commutes with every element of (Ik(A)), the reduced

syllable form tells us that we can always write an element g € {(st(A)) in the form g = A,

where A € (A) and [ € (Ik(A)).
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Genevois observed that the graph S(T') is a quasi-median graph [Genl7, Proposition 8.2].

Moreover, he showed that the only non-cubical behaviour arises from the vertex groups.

Proposition 2.6.14 (|Genl7, Lemmas 8.5, 8.8]). Two adjacent edges of S(I') are the edges
of a triangle if and only if they are labelled by elements of the same vertex group. Two
adjacent edges of S(I') are the edges of an induced square if and only if they are labelled by
elements of adjacent vertex groups. In this case, the opposite edges of the square are labelled

by the same vertex groups.

The above proposition means that while S(I') is not a cube complex, it is the 1-skeleton
of a complex built from prisms glued isometrically along subprisms. Henceforth, we will

interchangeably refer to S(I') and the canonical cell complex of which it is the 1-skeleton.

Definition 2.6.15 (Prism). A prism P of S(I') is a subcomplex which can be written as a

product of simplices P =T} x -+ x T},.

Since a cube is a product of 1-simplices, prisms generalise the cubes in a cube complex.
Genevois used the prisms in S(I") to build hyperplanes with very similar properties to those
in CAT(0) cube complexes. We present a slightly different, but equivalent, construction of
these hyperplanes in S(I").

Recall that in a cube complex, hyperplanes are built from mid-cubes. If we view each

cube in a cube complex as a product [—%, %]n, we obtain a mid-cube by restricting one of
the intervals [—%, %] to 0. In much the same way, we obtain a mid-prism from a prism by

performing a barycentric subdivision on one of its simplices. If this simplex is a 1-simplex,

this just gives us the midpoint of the edge.

Definition 2.6.16 (Mid-prism). Given an n—simplex 7" in S(I"), perform a modified barycen-
tric subdivision as follows. First add a vertex at the barycentre of each sub-simplex of
T. Then for each 2 < k < n, add edges connecting the barycentre of each k—simplex in

T to the barycentres of each of its (k — 1)-sub-simplices; see Figure 2.14. The complex
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Figure 2.14: The mid-prism of a 3—simplex and a mid-prism of the product of a 2—-simplex
and a 1-simplex.

we have added through this procedure is then the 1-skeleton of a canonical simply con-
nected cell complex, which we denote by K (7). We call K(T) the mid-prism of T. More
generally, we define a mid-prism K; of a prism P = T} x --- x T,, to be the product
Ki=Ty x ... T,y x K(T;) x Tiz1 X -+ x Tpp.

Note that the simplices in S(I') that arise from infinite vertex groups have infinitely
many vertices. A simplex with infinitely many vertices may still be assigned a mid-prism, by
constructing mid-prisms for each of its finite sub-simplices. The inductivity of the barycentric
subdivision procedure ensures that these mid-prisms all agree with each other.

A hyperplane of a cube complex is defined to be a maximal connected union of mid-cubes.
In the same way, we can construct hyperplanes in S(I") by taking maximal connected unions

of mid-prisms.

Definition 2.6.17 (Hyperplane, carrier). Construct an equivalence relation ~ on the edges
of S(I') by defining F; ~ Es if E; and E, are either opposite sides of a square or two sides of
a triangle, and then extending transitively. We say the hyperplane dual to the equivalence
class [FE] is the union of all mid-prisms that intersect edges of [E]; see Figure 2.15. The
carrier of the hyperplane dual to [E] is the union of all prisms that contain edges of [E].

If a geodesic v or a coset g{A) contains an edge that is dual to a hyperplane H, then we
say H crosses v or g{A). We say a hyperplane H separates two subsets X and Y of S(I) if
X and Y are each entirely contained in different connected components of S(I') \ H.
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Figure 2.15: A hyperplane (blue) inside its carrier, and an associated combinatorial hyper-
plane (red).

Each hyperplane of a cube complex comes with two corresponding combinatorial hyper-

1
2

1

planes, obtained by restricting intervals to — 5

or 5 instead of 0 when constructing mid-cubes.
The advantage of these combinatorial hyperplanes is that they form subcomplexes of the cube
complex. In S(I"), we obtain combinatorial hyperplanes by restricting a simplex to a vertex

instead of performing barycentric subdivision when constructing mid-prisms.

Definition 2.6.18 (Combinatorial hyperplane). Let P = T} x --- x T, be a prism, where
each T; is an n;—simplex. Each mid-prism K; splits P into n; sectors, each containing a
subcomplex Ty x -+ x {vg} x -+ x Tp,, where vy is a vertex of T;. Given a hyperplane H of
S(T"), consider the union of all such subcomplexes obtained from the mid-prisms of H. We
call each connected component of this union a combinatorial hyperplane associated to H; see

Figure 2.15.

Remark 2.6.19 (Labelling hyperplanes). Proposition 2.6.14 tells us that if two edges F;
and Fy of S(I") are sides of a common triangle or opposite sides of a square, then they are
labelled by elements of the same vertex group. It follows that all edges that a hyperplane H
intersects are labelled by elements of the same vertex group G,. We therefore label H with

the vertex group GG,,. Moreover, the edges of the associated combinatorial hyperplanes will
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then be labelled by elements of (Ik(v)). This a fact that will be exploited repeatedly in our

proofs in Chapter 4.

Genevois established that the hyperplanes of S(I') maintain many of the fundamental

properties from the cubical setting (cf. Proposition 2.4.13).
Proposition 2.6.20 (Properties of hyperplanes; [Genl7, Section 2|).
(1) Every hyperplane of S(I') separates S(I') into at least two connected components.

(2) If H is a hyperplane of S(I'), then any combinatorial hyperplane for H is convex in
S(T).

(3) If H is a hyperplane of S(I'), then any connected component of S(I') . H is convex in
S(T).

(4) A continuous path v in S(I') is a geodesic if and only if v intersects each hyperplane at

most once.
(5) If two hyperplanes cross, then they are labelled by adjacent vertex groups.

Remark 2.6.21. Item (4) implies that a hyperplane H of S(I") crosses a geodesic connecting
a pair of points x,y if and only if H separates x and y. Thus, if v1,...,7, is a collection of
geodesics in S(I') such that v; U -+ U 7, forms a loop and H is a hyperplane that crosses

Vi, then H must also cross v; for some j # i.

It is important to note that while we still use the terms ‘hyperplane’ and ‘combinatorial
hyperplane’ here, they differ from those of cube complexes in a critical way: the complement
of a hyperplane H in S(I') may have more than two connected components, and thus H may
have more than two associated combinatorial hyperplanes.

Genevois and Martin use the convexity of the cosets g{A) to construct a nearest point

projection onto g{A), which we call a gate map. The map and its properties are given
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below, and will be essential tools throughout Chapter 4. Again, these gate maps share many

properties with their cubical counterparts (cf. Proposition 2.4.14).

Proposition 2.6.22 (Gate onto graphical subgroups; [GM18, Section 2|). Let Gr be a
graph product. For all A = T and g € Gr, there exists a map ggn: Gr — g{\\) satisfying the

following properties.

(1) For all k,h e Gr, dg(gga(h), gga(k)) < dsyi(h, k).

(2) For all x,h € Gr, h - gga(x) = gnga(hz). In particular, goa(z) = g - ga(g'z).

(3) Forallx € Gr, gya(x) is the unique element of g{\) such that dsy(x, gga(z)) = dgy(z, g(A)).
(4) Any hyperplane in S(I') that separates x from gga(x) separates x from g(A).

(5) If z,y € Gr and H is a hyperplane in S(I') separating gya(x) and gga(y), then H
separates x and y, so that x and gya(z) (resp. y and gon(y)) are contained in the same

connected component of S(I') \ H.

We also obtain a convenient algebraic formulation for the gate map of an element g onto
a graphical subgroup (A) by considering the collection of all possible initial subwords of ¢

that are contained in (A).

Definition 2.6.23 (Prefixes and suffixes). Let g € Gr. If there exist p, s € Gr so that g = ps
and |glsyi = |Plsyt + |S|syt, we call p a prefiz of g and s a suffiv of g. We shall use prefix(g)

and suffix(g) to respectively denote the collections of all prefixes and suffixes of g.

Lemma 2.6.24 (Algebraic description of the gate map). For all A € T and g € Gr, there
exists p € prefix(g) n{A\) so that gx(g) = p. Further, p is the element of prefix(g) n (A) with

the largest syllable length.

Proof. Since prefix(g) n(A) is a finite set, there exists p € prefix(g) Nn(A) so that |p'|s < [p|sy

for all p’ € prefix(g) N (A). Let x = ga(g) and let s be the suffix of g corresponding to p.
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If there exists a non-identity element y € prefix(s) n (A), then py would be an element of
prefix(g) n (A) with syllable length strictly larger than p. Since this is impossible by choice
of p, we have prefix(s) N (A) = {e}. This implies |27 ps|sy = ||s since 27'p € (A), and we

have the following calculation:

dsyl(x7g) = |x_1p3|syl = |S|syl = |p_lg|syl = dsyl(p7 g)

Since p € (A), this implies x = p, as x is the unique element of (A) which minimises the

syllable distance of g to (A) (Proposition 2.6.22(3)). O

Definition 2.6.25. Denote the element p of prefix(g) n (A) with largest syllable length by

prefix, (¢g), and define suffix,(g) = (prefix, (¢~')) "

2.7 Hierarchical hyperbolicity

Hierarchical hyperbolicity is a quasi-isometry invariant property which combines elements
of both coarse Euclidean and hyperbolic geometry. This version of non-positive curvature
was devised by Behrstock, Hagen, and Sisto by axiomatising Masur and Minsky’s treat-
ment of mapping class groups using subsurface projections and curve graphs [MM99, MMO00,
BHS17b|. The geometric information of a hierarchically hyperbolic space X (commonly ab-
breviated ‘HHS’) is encoded in a collection of projections onto hyperbolic spaces associated
to X. These projections are arranged via a partial order called nesting, and flats (quasi-
isometrically embedded copies of Z™") are encoded via a combinatorial relation between the
projections called orthogonality. Due to the extra structure endowed by the projections and
relations, one must be careful to distinguish a hierarchically hyperbolic space from a hierar-
chically hyperbolic group. A hierarchically hyperbolic group (commonly abbreviated ‘HHG’)
is not merely a group whose Cayley graph is an HHS; the hierarchy structure must also be

equivariant with respect to the group action.
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Examples of HHGs include mapping class groups [MM99, MMO00, Beh06, BKMM12]
and fundamental groups of special cube complexes |[BHS17b|; see Section 2.7.4 for more
details on the HHG structure of the latter. Examples of HHSs include Teichmiiller space
with the Teichmiiller or Weil-Petersson metric ([Raf07, Durl6, EMR17| and [Bro03, Beh06,
BKMM12]| respectively) and fundamental groups of closed 3-manifolds with no Nil or Sol
components [BHS19, Theorem 10.1]. Note that these 3—manifold groups are conjectured not
to be HHGs in general [BHS19, Remark 10.2].

We break the definition of an HHG given by Behrstock, Hagen, and Sisto in [BHS19]
into three parts in order to more clearly organise the structure of our arguments. First
we define what we call the proto-hierarchy structure, which sets up the defining information
(relations and projections) for the HHG structure. We then give the more advanced geometric
properties that we need to impose for the group to be a hierarchically hyperbolic space. We
then define a hierarchically hyperbolic group to be a group whose Cayley graph is an HHS in

such a way that the HHS structure agrees with the group structure.

Definition 2.7.1 (Proto-hierarchy structure). Let X be a quasi-geodesic space and E > 0.
An E-proto-hierarchy structure on X is an index set & and a set {C(W) : W € &} of

geodesic spaces (C(W),dy ) such that the following axioms are satisfied.

(1) (Projections.) For each W € &, there exists a projection my: X — 2¢W) such that
for all z € X, my (x) # & and diam(my (x)) < E. Moreover, each my is (E, E)—coarsely

Lipschitz and C(W) € Ng(mw (X)) for all W € &.

(2) (Nesting.) If & # (¢, then & is equipped with a partial order = and contains a unique
C-maximal element. When V = W, we say V is nested in W. For each W € &, we
denote by Gy the set of all V € & with V = W. Moreover, for all VW e & with

V & W there is a specified non-empty subset py, < C(W) with diam(py,) < E.

(3) (Orthogonality.) & has a symmetric relation called orthogonality. If V' and W are
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orthogonal, we write V' L. W and require that V and W are not =—comparable. Further,
whenever V £ W and W L U, we require that V L U. We denote by &3}, the set of all
VeGwithV LW.

(4) (Transversality.) If V,WW € G are not orthogonal and neither is nested in the other,
then we say V, W are transverse, denoted VAW . Moreover, for all V,W € & with VAW

there are non-empty sets py;; € C(W) and p}Y = C(V) each of diameter at most E.

We use & to denote the entire proto-hierarchy structure, including the index set &, spaces
{C(W) : W e &}, projections {my : W € G}, and relations =, L, hn. We call the elements of
S the domains of & and call the set py the relative projection from V to W. The number

E' is called the hierarchy constant for &.

Definition 2.7.2 (Hierarchically hyperbolic space). An E-proto-hierarchy structure & on a
quasi-geodesic space X is an E-hierarchically hyperbolic space structure (E-HHS structure)

on X if it satisfies the following additional axioms.
(1) (Hyperbolicity.) For each W € &, C(W) is E-hyperbolic.

(2) (Finite complexity.) Any set of pairwise E—comparable elements has cardinality at

most F.

(3) (Containers.) For each W € & and U € &y with Sy n &4 # J, there exists
Q € Sy ~ {W} such that V = @ whenever V € Gy n &3 We call Q the container of
UinW.

(4) (Uniqueness.) There exists a function #: [0,00) — [0,00) so that for all » > 0, if
x,y € X and dy(z,y) = 6(r), then there exists W € & such that dy (7w (x), 7w (y)) = 7.

We call 0 the uniqueness function of &.

(5) (Bounded geodesic image.) For all z,y € X and VW € & with V = W, if
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dy(mv(z),mv(y)) = E, then every C(W)-geodesic from my (x) to my(y) must inter-

sect the E-neighbourhood of py;.

(6) (Large links.) For all W e & and z,y € X, there exists £ = {V},...,V,} € Gy ~{W}
such that m is at most Edw (mw(z), 7w (y)) + E, and for all U € Sy ~ {W}, either

U € Gy, for some 4, or dy(my(z), 7y (y)) < E.

(7) (Consistency.) If VAV, then

min {dw (1w (), py ), dv (v (2), o)} < E

for all z € X. Further, if U £ V and either V = W or VAW and W £ U, then

(8) (Partial realisation.) If {V;} is a finite collection of pairwise orthogonal elements of

S and p; € C(V;) for each i, then there exists z € X so that:

o dy,(my,(z),p;) < E for all 4

e for each i and each W e &, if V; = W or WV}, we have dw(ww(x),p%) < F.

We call a quasi-geodesic space X an E-hierarchically hyperbolic space (E-HHS) if there
exists an E—hierarchically hyperbolic space structure on X'. We use the pair (X, &) to denote

a hierarchically hyperbolic space equipped with the specific HHS structure &.

Definition 2.7.3 (Hierarchically hyperbolic group). Let G be a finitely generated group
and let X be the Cayley graph of G with respect to some finite generating set. We say G is

an E-hierarchically hyperbolic group (E-HHG) if:
(1) The space X admits an E-HHS structure &.

(2) Thereis a E—, 1— and Mh—preserving action of G on & by bijections such that & contains

finitely many G-orbits.
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(3) For each W € & and g € G, there exists an isometry gy : C(W) — C(gWW) satisfying
the following for all VW € & and ¢,h € G.

e The map (gh)w: C(W) — C(ghW) is equal to the map gpw o hyw: C(W) —
C(ghW).

e For each z € X, gw(mw(z)) and 7w (g - ) are at most E-far apart in C(gWV).

o If VAW or V & W, then gw(pyy) and pZ% are at most F—far apart in C'(gW).

The structure & satisfying (1)—(3) is called an E-hierarchically hyperbolic group (E—
HHG) structure on G. We use (G, S) to denote a group G equipped with a specific HHG

structure S.

Remark 2.7.4. Since the property of being an HHS is invariant under quasi-isometry
[BHS19, Propositon 1.10], one may also obtain an HHG structure for a group G by finding
an HHS (X, &) such that G acts on X geometrically and satisfies Properties (2) and (3). In
particular, the Milnor-Svarc Lemma tells us that this HHG structure is given by composing

the projections in (X, &) with an orbit map G — X, g — ¢ - x for some fixed x € X.

We may deduce a number of additional useful properties as a direct consequence of these
axioms, many of which shall prove essential in Chapter 3. For example, Durham-Hagen—
Sisto show that the partial realisation axiom implies that the relative projections p‘g and pg
of orthogonal domains W,V € & coarsely coincide. Note, pg/ and p‘é are both defined when
WahQ or W= @ and VAQ or V & Q.

Lemma 2.7.5 (|DHS17, Lemma 1.5). Let (X, &) be an E-HHS. If W,V € G withW LV,

and Q € & with pfy and p, both defined, then dg(pg), py) < 2E.

One may also deduce a strengthened version of the partial realisation axiom, called the
realisation theorem, which characterises which tuples in the product [ [, s C(V') are coarsely

the image of a point in X. Essentially, it says if a tuple (by) € [[.s C(V) satisfies the
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consistency and bounded geodesic image axioms of an almost HHS, then there exists a point
x € X such that 7y (z) is uniformly close to by for each V € &. While it is straightforward
to state what it means for a tuple to satisfy the consistency axiom—either dy (by, ) or
dy (by, pYY) is less than E whenever V AW—it is more opaque as to how a tuple can satisfy
the bounded geodesic image axiom. For this we need the following map from C (W) to C(V)
when V ¢ W.

Definition 2.7.6 (Downward relative projection). Let & be an E-HHS structure for X.
For each W € & and p e C(W), pick a point =, € X so that my (z,w) is within £ of p. If
V,W e & with V & W, then define the map pl¥ : C(W) — 2°V) by ot (p) = 7y (v,w). We

call the map pYY a downward relative projection from W to V.

With the downward relative projection, we can formulate the necessary conditions for a
tuple (by)yes to be realised by point in X. In the following, one should think of the first
condition as saying that the tuple satisfies the consistency axiom and the second as saying

the tuple satisfies the bounded geodesic image axiom.

Definition 2.7.7 (Consistent tuple). Let (X,&) be an HHS and let by € C(V) for each

V e &. For each k = 0, the tuple (by)yeg is k—consistent if:
(1) whenever VAW, min{dw (bw, pir), dv (b, pi¥ )} < K;
(2) whenever V & W, min{dw (bw, p¥y), diam(by U pl¥ (bw))} < k.

Given z € X, the tuple (my(z))ves is always consistent; properties (1) and (2) follow from
the consistency and bounded geodesic image axioms for (X', &), respectively. Conversely, the

realisation theorem says that all consistent tuples are coarsely the image of point in X.

Lemma 2.7.8 (Projections of points are consistent, [BHS19, Proposition 1.11]). Let & be

an E-HHS structure for X. If v € X, then (my(x))ves is a 3E—consistent tuple.
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Theorem 2.7.9 (The realisation of consistent tuples, [BHS19, Theorem 3.1|). Let (X, &)
be an HHS. There exists a function 7: [0,00) — [0,00) so that if (by)ves is a K—consistent

tuple, then there exists x € X so that dy(x,by) < 7(k) for all V € &.

Furthermore, the relative projections of an HHS also satisfy the inequalities in the defi-

nition of a consistent tuple.

Lemma 2.7.10 (p—consistency, [BHS19, Proposition 1.8]). Let & be an E-HHS structure
for X and V,W,Q € &. Suppose WhHhQ or W = Q and WAV or W = V. Then we have

the following.

(1) If QAV, then min{dg(ply , p%)), dv(pi. piV )} < 2E.
(2) If Q =V, then min{dy (o2, p¥¥), diam(pg U p5(py/))} < 2E.

One remarkable and far less straightforward consequence of the HHS axioms is the exis-
tence of a Masur-Minsky style distance formula, which allows for distances in an HHS to be

expressed as a sum of distances in the associated hyperbolic spaces.

Theorem 2.7.11 (Distance formula; [BHS19, Theorem 4.5]). Let (X, &) be an HHS. There

exists oo > 0 such that for all o = oy there exist K > 1 and L = 0 such that for all z,y € X,

% SN fdu(z,9)}, — L<dx(z,y) < K Y. {du(z,9)}, + L

UeG UeG

where we define {N}_ =N if N >0 and 0 if N < 0.

2.7.1 Detecting other forms of hyperbolicity in HHSs

One powerful tool of hierarchical hyperbolicity is the ability to extract information regarding
other generalisations of hyperbolicity from the HHS structure. In this section, we shall outline
methods of detecting d—hyperbolicity, acylindrical hyperbolicity, and relative hyperbolicity

in HHSs.
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Morally, detecting forms of hyperbolicity (or lack thereof) amounts to analysing patterns
of orthogonality occurring within the HHS structure. For example, a theorem of Behrstock—
Hagen—Sisto tells us that an HHS is hyperbolic precisely when there is no non-trivial orthog-

onality:.

Theorem 2.7.12 (Characterisation of hyperbolicity; [BHS17¢, Corollary 2.16]). Let (X, &)

be an HHS. The following are equivalent.
o X s hyperbolic.

e (Bounded orthogonality.) There exists a constant D > 0 such that

min(diam(C(U)),diam(C(V))) < D

for all U,V € G satisfying ULV

In the case of acylindrical hyperbolicity, a result of Behrstock-Hagen—Sisto tells us that
every HHG G acts acylindrically on its E—maximal hyperbolic space; however, G is only

acylindrically hyperbolic when this hyperbolic space is unbounded.

Theorem 2.7.13 (Criteria for acylindrical hyperbolicity; [BHS17b, Corollary 14.4]). Let
(G,6) be an HHG and let S be the unique =-mazimal element of &. Then G acts acylin-
drically on C(S). In particular, if C(S) is unbounded and G is not virtually cyclic, then G

1s acylindrically hyperbolic.

A result of Russell tells us that if collections of intersecting non-negatively curved regions
in an HHG can be isolated from each other (the isolated orthogonality criterion), then the
HHG is relatively hyperbolic and these isolated collections form the peripheral subgroups
[Rus20, Theorem 1.1].
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Definition 2.7.14 (Isolated orthogonality). Let (X, &) be an HHS and let S be the =—
maximal element of &. We say (X, &) has isolated orthogonality if there exists a collection

of domains Z € & \ {S} satisfying the following conditions.

(1) For all VW e & with VLW, there exists U € Z such that VW & U.
(2) 6y, n Gy, = J for all pairs of distinct Uy, Us € 7.

Theorem 2.7.15 (Criterion for relative hyperbolicity; [Rus20, Theorem 1.1|). A hierarchi-

cally hyperbolic space (G, &) is relatively hyperbolic if & has isolated orthogonality.

A characterisation of thickness is currently unknown for HHGs in their full generality.
In fact, it is not even known if HHGs satisfy a strict dichotomy between relative hyperbol-
icity and thickness, although this is conjectured to be true, and has been shown in many
cases. For example, Behrstock-Drutu—Mosher show that mapping class groups are either
hyperbolic or thick of order 1 [BDM09, Theorem 8.1|, and Brock-Masur build upon results
of Behrstock—Drutu-Mosher to show that Teichmiiller space with the Weil-Petersson metric
is either hyperbolic, relatively hyperbolic, or thick of order 1 [BDM09, Theorem 12.5||[BMO0S,
Theorems 1, 6]. Characterisations of thickness and relative hyperbolicity also exist for right-

angled Artin and Coxeter groups; see Theorems 2.4.21 and 2.4.26.

2.7.2 Relative HHSs

In [BHS19|, Behrstock, Hagen, and Sisto introduce relative HHSs, a broader class of spaces
obtained by relaxing the hyperbolicity axiom of an HHS. In Chapter 4, we show that all

graph products satisfy this version of hierarchical hyperbolicity.

Definition 2.7.16 (Relative HHS/HHG). Let & be an E-proto-hierarchy structure for a
quasi-geodesic space X'. We say G is a relatively E-hierarchically hyperbolic space structure
for X if G satisfies all of the HHS axioms in Definition 2.7.1 except the hyperbolicity axiom,

and instead satisfies the following weaker version.
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(1) (Hyperbolicity) For each W € &, either W is E-minimal or C'(WW) is E-hyperbolic.

If S is a relative HHS structure for X', we say the pair (X, &) is a relatively E-hierarchically
hyperbolic space. Furthermore, if X' is the Cayley graph of a finitely generated group G with
respect to some finite generating set, and G satisfies conditions (2)—(3) of Definition 2.7.3,
then & is called a relatively E—hierarchically hyperbolic group structure on GG, and we say

the pair (G, S) is a relatively E-hierarchically hyperbolic group.

Remark 2.7.17. Despite this weakening of the hyperbolicity axiom, relative hierarchical
hyperbolicity still retains many of the important properties of hierarchical hyperbolicity; for
example, relative HHSs satisfy the distance formula given in Theorem 2.7.11, and relative

HHGs are acylindrically hyperbolic under the conditions of Theorem 2.7.13.

2.7.3 Almost HHSs

Just as relative HHSs are obtained by weakening the hyperbolicity axiom, one can obtain an
almost HHS by weakening the container axiom. The first and foremost consequence of the
container axiom is that every HHS structure has ‘finite rank’, i.e., a uniform bound on the

size of any pairwise orthogonal collection of domains.

Lemma 2.7.18 (|[BHS19, Lemma 2.1]). Let (X, &) be an E-hierarchically hyperbolic space.

If Wy, ..., W, is a pairwise orthogonal collection of elements of &, then n < E.

Observing that many consequences of being a hierarchically hyperbolic space structure
still apply when the container axiom is replaced with the conclusion of Lemma 2.7.18, Abbott,

Behrstock, and Durham coined the term almost HHS structure to describe such spaces.

Definition 2.7.19 (Almost HHS). Let & be an E—proto-hierarchy structure for a quasi-
geodesic space X'. We say G is an almost E-hierarchically hyperbolic space structure for X if
G satisfies all of the HHS axioms in Definition 2.7.1 except the container axiom, and instead

satisfies the following restriction on the orthogonality relation.
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(3') (Finite rank) If Wy, ... W, is a pairwise orthogonal collection of elements of &, then

n< k.

If & is an almost HHS structure for X, we say the pair (X, &) is an almost hierarchically

hyperbolic space.

Remark 2.7.20. Lemma 2.7.5, Lemma 2.7.8, Theorem 2.7.9, and Lemma 2.7.10 also hold
in the almost HHS setting, since the only use of the container axiom in their proofs is Lemma

2.7.18.

Using this weakened axiom, Abbott, Behrstock, and Durham were able to show several
impressive results, including a complete characterisation of contracting quasigeodesics in
HHGs [ABD21]. In Chapter 3, we show that every almost HHS structure can in fact be
upgraded to an HHS structure, simplifying Abbott—Behrstock—Durham’s proofs significantly.
This also has implications for Chapter 4, where it enables us to show that any graph product

of HHGs can be endowed with an HHG structure.

2.7.4 HHS structures on CAT(0) cube complexes

We shall conclude this chapter by providing explicit examples of HHS structures for CAT(0)
cube complexes, which in turn will be key in constructing HHG structures on graph braid
groups in Chapter 5. As shown in [BHS17b|, HHS structures can be put on CAT(0) cube

complexes by studying factor systems.

Definition 2.7.21 (Factor system). A factor system § on a CAT(0) cube complex X is a

collection of subcomplexes of X with the following properties.
(1) XeF.
(2) Each F € § is non-empty and convex.

(3) There exists A > 1 such that each x € X(© is contained in at most A elements of F.
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(4) § contains all non-trivial convex subcomplexes parallel to combinatorial hyperplanes of

X.
(5) There exists & = 0 such that for all F, F’ € §, either gp(F”') € § or diam(gr(F")) < &.

Behrstock, Hagen, and Sisto show that a special cube complex C' with finitely many
hyperplanes has a canonical factor system on its universal cover X. This factor system is

obtained by considering the collection of all subgraphs of the crossing graph of C.

Definition 2.7.22 (Crossing graph). Let X be a cube complex. The crossing graph = of X

is defined as follows.
e The vertices of = are the hyperplanes of X.

e Two vertices of = are connected by an edge if the corresponding hyperplanes cross in

X.

Let H be the collection of hyperplanes of C', let = be the crossing graph of C', and let
R be the collection of all subgraphs of =. Note that there is a one-to-one correspondence
between the vertices of = and the elements of H, therefore each {2 € R corresponds to a
subset A € H, by taking A = Q©).

Given two edges E, E' of C, write E ~q E' if there is a path v in C from E to E’
such that every edge of v (including E and E') is dual to some hyperplane in Q. Let
[E]q denote the equivalence class of E with respect to ~q. Define Cg to be the collection

of induced subcomplexes of C' whose 1-skeleton is [E]q for some edge F.

Theorem 2.7.23 (|[BHS17b, Corollary 8.9]). Let C be a special cube complex with finitely
many hyperplanes, and let X be its universal cover. Let = be the crossing graph of C and
let R be the collection of all subgraphs of =. The collection of all lifts of subcomplexes in

Uger Ca forms a factor system for X.
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Denote this factor system by §. A proto-hierarchy structure & can then be constructed
for X as follows. See [BHS17b, Remark 13.2] for full details on how & forms an HHS

structure.

Define an equivalence relation || on § as follows. Given two subcomplexes F, F’ € §,
write F'||F” if each hyperplane of X crosses F' if and only if it crosses F'. We say F' and F’
are parallel, and call the equivalence class [F'| of F its parallelism class. We then define the
index set & for the proto-hierarchy structure by choosing exactly one element of § in each
parallelism class.

Given F € G, define Cy(F) to be the graph whose vertices are the hyperplanes of F', and
where two vertices are connected by an edge if the carriers of the corresponding hyperplanes
intersect. We call Cy(F) the contact graph of F. We then take C'(F') to be the factored
contact graph, defined as follows.

Let F' € § and define §p = {F' n F | F' € §}. For each Y € §r, we can then consider
Co(Y') as a subgraph of Cy(F'). For each parallelism class [Y], if Y € §p N {F} and Y is
either parallel to a combinatorial hyperplane or has diameter at least £, then cone off Cy(Y')
in Cy(F). That is, for each such [Y], add a vertex vy to Cy(F') and add edges connecting vy
to every vertex of Cy(Y) € Cy(F'). The resulting graph is the factored contact graph C(F).

The proto-hierarchy structure is then given as follows.

(1) (Projections.) Given F € &, define the projection map 7p : X — 260" as 1p =
ip © pr O gp, where gr : X — F is the gate map onto the subcomplex F' < X,
pr : F — 260 is defined by taking pr(x) to be the maximal collection of hyperplanes

of F whose carriers all contain x, and ip : 26007) — 26(F) i5 the inclusion map.

(2) (Nesting.) Given F, F' € G, we say F is nested in F” (written F' = F”) if there exists a
subcomplex K < F’ such that F||K. If F' & F’, then the set H of hyperplanes crossing

F' is the same as the set of hyperplanes crossing K, and therefore H is a subset of the
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set of hyperplanes crossing F’. It follows that Cy(F') < Co(F”). The upwards relative

projection is then defined to be pk, = mp (F) = ip(Co(F)).

(3) (Orthogonality.) Given F,F' € &, we say F is orthogonal to F' (written FLF") if
there exist K||F and K'||F’ such that there is a cubical isometric embedding F x F’ —

X where K is the image of F' x {gm(K)} and K’ is the image of {gr(K')} x F.

(4) (Transversality.) If F, F' € & are not nested or orthogonal, then we say they are
transverse (written F'hF"). The lateral relative projection from F' to F” is defined as

ph =7 (F), and pk' is defined in the same way.

Theorem 2.7.24 (Special groups are HHGs; [BHS17b, Proposition B, Remark 13.2]). Let
X be a special cube complex with finitely many hyperplanes. Then its universal cover is a

hierarchically hyperbolic space, and 7 (X) is a hierarchically hyperbolic group.

Corollary 2.7.25 (Graph braid groups are HHGs). Let I" be a finite graph. Then B,(T,S)

is a hierarchically hyperbolic group for alln =1 and for all S € UC,(T).

Proof. The case where I' is connected follows from such graph braid groups being funda-
mental groups of special cube complexes with finitely many hyperplanes (Corollary 2.5.7),
which are HHGs by Theorem 2.7.24. If I' has more than one connected component, then
we can express B, (I",S) as a product of graph braid groups of connected components of I’
by Lemma 2.5.2. Thus, B,(T",S) is a product of hierarchically hyperbolic groups, whence it
follows that B,(I",S) is itself a hierarchically hyperbolic group, by a combination theorem
of Behrstock, Hagen, and Sisto [BHS17b, Corollary 8.26]. ]
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Chapter 3

Almost HHSs are HHSs

The main result of this section establishes that all almost HHS structures can be promoted

to HHS structures by adding dummy domains to serve as the containers.

Theorem 3.0.1 (Almost HHSs are HHSs). Let (X, &) be an almost HHS. There ezists an
HHS structure € for X so that © < X, and if W € T~ & then the associated hyperbolic

space for W is a single point.

If (X, &) is an almost HHS, then the only HHS axiom that is not satisfied is the container
axiom. The most obvious way to address this is to add an extra element to & every time
we need a container. That is, if VW € & with V & W and there exists some Q & W with
Q 1V, then we add a domain D}, to serve as the container for V in W, i.e., every @ nested
into W and orthogonal to V will be nested into Dj;,. However, this approach is perilous as
once a domain @ is nested into Dy}, we may now need a container for @ in Dy,! To avoid
this, we add domains D}j, where V is a pairwise orthogonal set of domains nested into W;
that is, D}, contains all domains @ that are nested into W and orthogonal to all V € V.

This allows for all the needed containers to be added at once, avoiding an iterative process.

Remark 3.0.2. To prove Theorem 3.0.1, we shall require Lemma 2.7.5, Lemma 2.7.8, The-

orem 2.7.9, and Lemma 2.7.10. Each of these results was originally proved in the setting of
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hierarchically hyperbolic spaces, but as noted in Remark 2.7.20 they continue to hold in the

almost HHS setting.

Proof of Theorem 3.0.1. Let (X,&) be an almost HHS. Let V denote a non-empty set of
pairwise orthogonal elements of G and let W € &. We say the pair (W,V) is a container

pair if the following are satisfied:
e VEWforall VeV,
e there exists ) = W such that Q L V for all V e V.

Let © denote the set of all container pairs. We will denote a pair (W, V) € © by D},
Let T = S uD. If DY, € D, then the associated hyperbolic space, C(Dy), will be a

single point.
Claim 3.0.3. X admits a proto-hierarchy structure with index set ¥.

Proof. Since (X, &) is an almost HHS, we can continue to use the spaces, projections, and
relations of &. Thus, it suffices to verify the axioms for elements of ® and relations involving
elements of ©.

Projections: For D}, € D, the projection map is just the constant map to the single
point in C(DY,).

Nesting: Let Q € G and DY, DF € D.
e Define Qe DY, if Q= W in S and Q LV forall Ve V.
e Define D}, EQif W= Qin &.

e Define D}fv C DJR W =T in S and for all R € R either R L W or there exists V e V
with R V.

These definitions ensure C is still a partial order and maintain the =—maximal element

of G as the =-—maximal element of ¥.
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Since the hyperbolic spaces associated to elements of ® are points, define pg% = C (DY)
for every Q € T and DY, € © with Q = D};,. If D}, € ® and Q € & with D), = @Q, then
V £ @ in G for each V € V. Thus we define pg% = Uvey ,05. Lemma 2.7.5 ensures that
pg% has diameter at most 4F.

Orthogonality: Two elements D}, DF € © are orthogonal if W L T in &. Let Q € &
and Dy, € ©. Define Q L D}, if, in &, either Q L W or Q £V for some V eV .

Transversality: An element of ¥ is transverse to an element of ® whenever it is not
nested or orthogonal. Since the hyperbolic spaces associated to elements of ® are points, we
only need to define the relative projections from an element of ® to an element of &. Let
D}, € © and Q € & and suppose DY, h@. This implies W £ @ and W &£ Q. We define pg‘vj"

based on the G-relation between () and the elements of V.

e IfQ L Vforall VeV, then QdE W as Q= W would imply Q = Dy,. Thus we must

DY _ w
have @MW, so we define p," = pg -

o If VAQ or V & @ for some V € V, then pg exists and we define pg‘\’}" to be the union
of all the pg for VeV with VAQ or V = (). Lemma 2.7.5 ensures pg“;’ has diameter

at most 4F in this case.

e If Q = V for some V, then Q L DY, which contradicts Qh DY, so this case does not

occur. N

We now prove that (X, %) is a hierarchically hyperbolic space. This will complete the
proof of Theorem 3.0.1. By abuse of notation, let E be the largest of the constants for the
proto-structure of ¥.

Hyperbolicity: For all elements of ® the associated spaces are points and thus hyper-
bolic. For elements of &, the associated spaces are hyperbolic since & is an almost HHS
structure.

Finite complexity: First consider a nesting chain of the form Dw C D%? C...C D%}l.
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Claim 3.0.4. The length of D)} = D}2 = ... = D} is bounded by E? + E.

Proof. For each V e | J!_, V;, we have V = W and hence V £ W. As Dylj‘l = D%,}I}' for each
i€{2,...,n}, every element of V; must therefore be nested into an element of V;_;. Denote
the elements of V; by V{,... V]!, Since each V; is a pairwise orthogonal subset of &, we have
k; < E for each i € {1,...,n} by the finite rank axiom of an almost HHS (Definition 2.7.19).
We define a V-nesting chain to be a maximal chain of the form V" = Vfgj C...c V) for
some m € {1,...,n} and j; € {1,...,k;}, with ¢ € {1,...,m}. Since the elements of V; are
pairwise orthogonal for each i € {1,...,n}, if V" is the E-minimal element of a V-nesting
chain, then V" is nested into exactly one element of V; for each ¢ < m. This implies that
each V-nesting chain is determined by its =-minimal element. Further, the set of =-minimal

elements of V-nesting chains is pairwise orthogonal. By the finite rank axiom of an almost

HHS, this implies there exist at most £ V-nesting chains.

In order for D}j}' # D;j[}'“, either k; 11 < k; or there exists j; € {1,...,k;}, jis1 €
{1,...,kis1} such that V;Ll = V. Thus, every step up the chain Dyt Do ...c DYy

results in either a strict decrease in k; (the cardinality of V;) to k; 1 (the cardinality of V; 1)
or a strict decrease within one of the V-nesting chains. Note that k; may increase when we
encounter a strict decrease in one of the V-nesting chains, since multiple elements of V;
may be nested into the same element of V;. However, this may only happen at most £ — k;
times, as there are at most F' V-nesting chains. Hence, the length of D} © Dy2 = ... & Dy
is bounded by E plus the total number of times a strict decrease can occur across all of the
V-nesting chains.

Each V-nesting chain V]! £ Vj:nljll C ... © V] contains at most E distinct elements of
G by the finite complexity of &. Finite rank implies there are at most £ different }V-nesting
chains, thus the number of steps of the chain DK} c D%? cC ... D% where there is a
strict decrease within one of the V-nesting chains is at most E2. This bounds the length of

D= Dc...c Dy by B>+ E. 0
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We now consider a nesting chain of the form DVl1 C D%,)[Z C ... Dy[}ln. In this case,
Wy W, e ... = W,, but not all of these nestings must be proper. Let 1 = 1 < iy < -+ < 44
be the minimal subset of {1,...,n} such that if i; < ¢ < i;;1, then W;, = W;. Thus
Wy W, & ... W, and k < E. Claim 3.0.4 established that [i; —i;11| < F? + E, so
n < k(E?*+ E) < E®+ E?, that is, any Z—chain of elements of D has length at most £ + E2.

Finally, since any =—chain of elements of ¥ can be partitioned into a &=—chain of elements
of ® and a Z-chain of elements of &, any =—chain in T has length at most E3 + E? + E.

Containers: Let W,V e G with VC W and {Q e Ty : Q LV} # I, ie., (W, {V}) is
a container pair. In this case, the container of V' in W for ¥ is D‘{,[‘,/ ),

We now show containers exist for situations involving elements of . We split this into
three subcases.

Case 1: DY, €D and Q€ & with DY, = Q. Since (I, V) is a container pair, there
exists P € & with P = W and P L V for all V € V. Suppose that D}, requires a container
in Q, that is, there is an element of ¥ that is orthogonal to D}, and nested in Q. We verify
that (@, {P}) is a container pair and Dép} is a container of D}, in Q.

IfTe&withT L DY and T £ Q, then T L W or T £ V for some V € V. In either
case, we have T' L P, so (Q,{P}) is a container pair and T E Dézp}. If DX € ® with DF = Q
and DR L DY, then T = Q and T' L W. Since P = W, this implies T L P and so (Q, {P})
is again a container pair, and DF = ng} .

Case 2: Dy, DY € © where DY, = DX. Since (W, V) is a container pair, there exists
PeGsothat P W and P LV for all V e V. Since Dy, = DZF, it follows that for all
R € R, either R 1. W or there exists V € V so that R = V. In both cases, R | P. Thus
P = Ru{P} is a pairwise orthogonal collection of elements of &. Suppose that D}, requires
a container in DX, that is, there is an element of ¥ that is orthogonal to D), and nested in

DX. We verify that (T, P) is a container pair and D} & DX is a container for DY, in DEF.

If Q € & satisfies Q = DF and DY, 1 @, then Q = T and we have either @ L W or
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Q = V for some V € V. In both cases, ) 1 P. Further, we must have () 1 R for each R e R
as Q = DF. Thus (T,P) is a container pair and @ = D}. On the other hand, if DF € ®
satisfies D§ L Dy, and Dg = D7, then Q L W, Q = T, and for each R € R either Q L R
or there exists Z € Z with R & Z. Since (Q, Z) is a container pair, there exists U € & such
that U £ @ and ULZ for all Z € Z. Since Q L W, we also have U 1 P as U = () and
P = W. For each R € R, either R L () or there exists Z € Z with R = Z. In both cases,
R L U. Thus, U is orthogonal to all elements of P = R u {P} and moreover U = Q = T,
so (T,P) is a container pair. Furthermore, DCZ2 c DI = D?U{P} since Dg = DX and P1Q.
We have therefore shown that DF is a container for DY, in DE.

Case 3: DX e® and Q € G with Q £ DF. This implies @ = R U {Q} is a pairwise
orthogonal set of elements of &. Further, suppose that @ requires a container in DX, that
is, there is an element of T that is orthogonal to ) and nested in DF. We verify that (T, Q)
is a container pair and D is a container for Q) in DF.

Suppose there exists V € & with V = DF and V 1L Q. Then V = T and V is orthogonal
to all the elements of R U {Q}. Thus (T, Q) is a container pair, so D¥ exists and V = DZ.
Now suppose there exists DY, = D} such that @ L DY,. Since (W,V) is a container pair,
there exists U € & with U = W and U orthogonal to each element of V. As Q 1 D}, we
have @ L W or Q = V for some V € V. In both cases, () L. U. Therefore U is orthogonal to
every element of Q, and moreover U = W = T since D% = DIR. Thus (7, Q) is a container
pair and U = DYQ. Now, for each R € R, either R L W or R = V for some V € V. Since
Q =R u {Q} and Q LW, this implies D}, = D2. Thus, (T, Q) is a container pair and D$
is a container for Q in DF.

Uniqueness, bounded geodesic image, large links: Since the only elements of T
whose associated spaces are not points are in &, these axioms for (X', ¥) follow from the fact
they hold in (X, S).

Consistency: Since the only elements of T whose associated spaces are not points are
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in G, the first inequality in the consistency axiom for (X, &) implies the same inequality
for (X,%). To verify the final clause of the consistency axiom, we need to check that if
Q,R,T € T such that Q = R with pf and p? both defined, then dT(pg,pg) is uniformly
bounded in terms of E. We can assume T € & as C(T) has diameter zero otherwise. We
can further assume at least one of ) and R is an element of ®, as we have the consistency

axiom for elements of &.

Case 1: Q= R T.

e Assume Q€ Sand R = D}, € ©. FixV € V. Since D)}, = R= T and ,0?% = Upev P7,
we have p¥. < pg% — pB. Since V 1 Q, Lemma 2.7.5 says dr(pk, p2) < dp(p¥, p%) <

2F.

e Assume Q@ = DY, e D and R e &. Fix V e V. In this case, p} < p% since DY, = Q = T.
Since DY, = Q = R, we have V = W £ R. Thus, the consistency axiom for & says

e Assume Q = D}, € ® and R = D},{;/. Thus W = W' & T and consistency in
& implies dr(p}¥,p%') < E. Fix V € V and V' € V. Consistency in & also im-
plies dz(p¥, p¥) < E and dp(p¥, p%') < E. Since pf < p% and p¥' < pf, we

have dr(p%, pf) < dr(py, pi) < dr(p}, piY) + diam(p}Y) + dr(p}}, pif") + diam(p}") +

dr(pf", pr ) < 5E.
Case 2: Q= R, RAT, and Q £ T. In this case we have either QAT or Q = T.

e Assume ) € & and R = D}, € ©. Since DY, = RAT, we cannot have T' = V for any
V €V (this would imply DY, L T). If V L T for all V € V, then WAT (as shown in
the proof of transversality in Claim 3.0.3) and p% = p?% = p¥. Since Q = R = D},
we have Q = W and consistency in & implies dr(p2, p) = dr(p%, pi¥) < E. If instead
there exists V € V so that TV or V = T, then p). < plT)‘\;V = pit. Since Q = R = D},

we have Q L V and Lemma 2.7.5 gives dr(p%, p&) < dr(p%, p¥) < 2E.
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e Assume Q = DY, € ® and R € &. As before, T & V for all V € V. First assume
there exists V € V so that VAT or V = T. This occurs when either DY, = Q = T or
QAT and not every element of V is orthogonal to 7. In both cases, p¥ < p?% = ,0?
and consistency in & implies dp(p%, p¥) < dr(p¥, pf) < 2E because V = W & R.
Now assume 7' L V for all V € V. This can only occur when DY, = QAT. In
this case, WhT and p? = p?% = p¥. Since W £ R, consistency in & implies

e Assume Q = DY, € ®D and R = D}, € ®. As before, T £ V forall Ve Vu V"
If pf = pi¥'  then we have the first case of transversality laid out in the proof of
Claim 3.0.3, that is, W/AT and V’ L T for all V' € V. Thus, if p& = p¥’, then the
result reduces to the previous bullet, replacing R with WW’. We can therefore assume
o £ ot ', meaning we have the second case of transversality where there exists V' € V'

so that V'’ is either transverse to or properly nested into 7.

Suppose p? # p¥ too. This implies there also exists V € V so that V is either
transverse to or properly nested into 7. Furthermore, p¥. < p% and p¥ < pE. Now,
DY, © DY, implies V' L W or V' is nested into an element of V. If V' | W, then
V L V' and Lemma 2.7.5 implies dr(p%, pf) < dr(p}, o) < 2E. If V' is nested into
an element of V, then either V' = V or V' L V since V is a pairwise orthogonal subset
of &. By applying consistency in & when V' £ V or Lemma 2.7.5 when V' L V', we

have dr(p?, pf}) < dr(p}., pf) < 2E.

Now suppose p¢ = pi¥. Then D), = D}, implies V' L W or V' is nested into W.
Applying Lemma 2.7.5 if V' LW or consistency in & if V' = W, we again obtain

dr(p2, p) = dr(plY, pF) < dr (P}, p¥') < 2F.

Partial realisation: Let Ti,...,7,, be pairwise orthogonal elements of ¥, and let

pi € C(T;) for each i € {1,...,n}. Without loss of generality, assume 7},...,T} € & and
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Tii1,---, T €D where k€ {0,...,n}. If k =0 (resp. k = n), then each T; € D (resp. each
T, € S).

Forie {k+1,....,n}, let T; = DVW and let ¢; be any point in pi}v < C(W;). Since
Ty, ...,T, are pairwise orthogonal, it follows that Wy, ..., W, are pairwise orthogonal too,
and for each j € {1,...,k}, T} is either nested into an element of some V; or orthogonal
to all Wyyq,...,W,. Without loss of generality, assume that Ti,...,7T; are nested into

elements of V,,,1 u--- UV, and T 1,..., Tk, Wes1, ..., W, are pairwise orthogonal, where

0<n—m<I{<k Ifl=0,then n =m and each T is orthogonal to every W;. Otherwise,

for each j € {1,...,1}, T; is nested in some W; for ¢ € {m + 1,...,n}. In both cases,
Ty, ..., T, Wiy1, ..., W, are pairwise orthogonal elements of &. We can therefore use the
partial realisation axiom in & on the points p1, ..., Pk, @k+1, - - - , ¢m to produce a point x € X

with the following properties:

(1) dp(z,p;) < Eforie {1,... k};

(2) dw,(z,q;) < Eforie{k+1,...,m};

(3) forallie{l,... k}if QAT; or T; = Q, then dQ(x,pg) < E;
(4) for all i € {k,...,m} if QAW; or W; = @, then dg(z, pj,') < E.

Now, for @ € &, define by € C(Q) as follows. Let V = |J;_,,, Vi and Vg = {V e V:
VhQor V = Q}. If Vo # J, then define by to be any point in UVGVQ pg. Since V is a
collection of pairwise orthogonal elements of &, the diameter of UVer ,05 is at most 2F
by Lemma 2.7.5. If either Q = V for some V € V or Q L V for all V € V then define
bo = mg(x). Since V is a collection of pairwise orthogonal elements of &, these two cases

encompass all elements of &.

Claim 3.0.5. The tuple (bg)ges is 3E-consistent.
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Proof. Let R,Z € &. Recall that if by = mz(z) and by = 7r(x), then the 3E—consistency
inequalities for br and by are satisfied by Lemma 2.7.8. Thus we can assume that there
exists V € V so that either V & Z or VAZ. Fix V € V so that bz € p%. We need to verify
the consistency inequalities when RhZ, R Z, and Z & R.

Consistency when RAZ: Assume RhZ. If R L V, V £ R, or R & V then ei-
ther Lemma 2.7.5 or consistency in & implies dz(pYy, p%¥) < 2E. Since by € pY, we have
dz(bz, p%) < 3E. Thus, we can assume RV so that Vg is non-empty, that is br € gy, Pk
and so bg is within 2E of p%. Now, if dz(bz, p%) > 3E, then dz(p%,p%) > 2E. Thus p-
consistency (Lemma 2.7.10) implies dr(pk, p%) < E. It follows that dr(bg, p3) < 3E by the
triangle inequality.

Consistency when R = Z: Assume R — Z. As before, if R L V,VE R or REV
then dz(p%, p%) < 2F and we have dz(bz, p%) < 3E. Thus, we can assume RAV so that
br is within 2F of pj. Now, if dz(bz, p%) > 3E, then dz(p%, p%) > 2E, and p-consistency
implies diam(p¥% U p4(pY)) < E. However, this implies diam(bgr U p%(bz)) < 3E since by € pY
and dgp(bg, p}) < 2F.

Consistency when Z — R: Assume Z — R. If R is orthogonal to all elements of V),
then R 1 V implies V' | Z which contradicts the assumption that V' = Z or VAZ. On the
other hand, if there exists V' € V so that R = V', then either VL Ror R= V = V’'. But
this implies either V' 1 Z or Z = V, both of which give a contradiction if VAhZ or V & Z.
There must therefore be an element of )V that is either properly nested in or transverse to
R, and we can repeat the same argument as in the previous case, switching the roles of R

and Z. O

Let y € X be the point produced by applying the realisation theorem (Theorem 2.7.9)
in & to the tuple (bg). We claim y is a partial realisation point for py,...,p, in ¥. Since
C (D%}L) is a single point, y satisfies the first requirement of the partial realisation axiom in T

for pgi1,...,pn. Fori < k, T; is either nested into an element of V,,,,1u---UV, or orthogonal

81



to all Wy,q,...,W,. This implies 7T; is either nested into an element of V' or orthogonal to
all elements of V. In both cases by, = mr,(x), and we have that 7, (y) is uniformly close to
77, (x), which is in turn E—close to p; by item (1).

Now, let @ € & with QMT; or T; = @ for some ¢ € {1,...,n}. We verify dQ(y,pg) is
uniformly bounded when 7 < k and 7 > k separately.

Assume i < k, so that T, € 6. If i < k and by = mg(x), then dQ(y,pgi) is bounded
by item (3). If i < k and by # mg(x), then by € pg for some V e V and T is either
orthogonal to or nested into V. If T; LV then dg(bg, pg) < 3F by Lemma 2.7.5. f T, = V
then dg(bg, pg) < 2F by consistency. The result then follows from the triangle inequality

since mg(y) is uniformly close to bg.
DY
Now assume ¢ > k, so that T; = D& e®. If DI‘,}‘}'Z_ = (@, then ,05 c pQWi for all V € V.
DYi
Since bq is within 2 of any py, for V € V;, this bounds dg(y, pQWi) uniformly. On the other
hand, if D“,}[}'ith, then either Q L V for all V € V; or there exists V € V; so that VAQ or
Vi
Wi

V = Q. In the latter case, pg < pg ' and we are finished since bq is within 2E of pg, giving

Vi
Wi

D
a uniform bound on the distance from 7mq(y) to p, *. In the former case, we must have

Vi

W;h@Q and pCDQWi is equal to pg/ If bg = mo(z) than we are done by item (4). Otherwise,
there exists V' € V X\ V; so that V'@ or V' &= @ and by € pgl. Since V' L W;, it follows

Vi
W;

that pgl is within 2F of pg/ Thus bg, and hence 7 (y), is uniformly close to pg/i = po

This completes the proof of Theorem 3.0.1. O]

Remark 3.0.6. (Almost HHGs are HHGs) If G is a group and & is an almost HHS structure
for the Cayley graph of G, then we say & is an almost HHG structure for G if it satisfies
items (2) and (3) of the definition of an HHG. The above proof shows that if (G, &) is an

almost HHG, then the structure ¥ from Theorem 3.0.1 is an HHG structure for G.

We conclude this section with a noteworthy application of Theorem 3.0.1. In [ABD21],
Abbott, Behrstock, and Durham sought to show every hierarchically hyperbolic group admits

an HHG structure with the following property.
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Definition 3.0.7 (Unbounded products). We say an (almost) hierarchically hyperbolic
group (G,S) has unbounded products if there exists B = 0 so that one of the following
holds for each V € &.

(1) V is the unique C-maximal element of .
(2) diam(C'(W)) < B whenever W = V.
(3) There exists W € & so that V' L W and diam(C(W)) = .

In [ABD21], it was originally shown every HHG admits an almost HHG structure with
unbounded products, and moreover you can verify that this structure satisfies the container
axiom if the original HHG satisfies an additional hypothesis called clean containers. With
Theorem 3.0.1, we were able to tie off this loose end in the theory of hierarchically hyperbolic

groups and show all HHGs admit a structure with unbounded products.

Corollary 3.0.8. If (G, &) is a hierarchically hyperbolic group, then there exists an HHG

structure T for G with unbounded products.

Proof. In the proofs of [ABD21, Theorem 3.7, Corollary 3.8|, it is shown that every HHG
admits an almost HHG structure with unbounded products. Thus, G admits an almost HHG
structure ¥y with unbounded products. Further, from the proof of [ABD21, Theorem 3.7],
%o has the property that for every non—-=-maximal domain V € %, there exist W, Q) € T,
sothat W eV, Q LV and diam(C(W)) = diam(C(Q)) = o. Let T be the HHG structure
obtained from T using Theorem 3.0.1. We need only verify unbounded products for elements
of T\ Tp. Using the notation of Theorem 3.0.1, let D}, € T \. Ty. By construction of Ty,
there exists R £ DY, with diam(C(R)) = o0, so item (2) does not hold, and moreover DY, is
not the =-maximal element of €. However, V 1. DY, for all V € V., and by construction of %,

there exists T' € T so that T = V and diam(C(T')) = oo. Since T LD}, item (3) holds. [
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Chapter 4

Hierarchical hyperbolicity of graph

products

In this chapter we show that all graph products of finitely generated groups can be endowed
with a relative HHG structure (Theorem 4.2.22), generalising results of Behrstock—Hagen—
Sisto for right-angled Artin groups [BHS17b|. We build the proto-hierarchy structure for
a graph product in Section 4.1 and spend Section 4.2 verifying this structure satisfies the
axioms of a relative HHS and respects the group structure. We also show that any graph
product has a (non-relative) HHS structure with respect to the syllable metric (Theorem
4.2.25), answering a question of Behrstock—Hagen—Sisto. Furthermore, in the particular case
where all the vertex groups are themselves HHGs, the graph product can be endowed with a
(non-relative) HHG structure with respect to the word metric (Theorem 4.3.1). This answers
a second question of Behrstock-Hagen—Sisto.

In Section 4.3, we give some applications of our theorems. We give a new proof of a
theorem of Meier, classifying when a graph product of hyperbolic groups is itself hyperbolic
(Theorem 4.3.6). We also answer two questions of Genevois regarding a quasi-isometry
invariant called the electrification of a graph product of finite groups (Theorems 4.3.10 and

4.3.12).
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4.1 The proto-hierarchy structure on a graph product

For this section G will be a graph product of finitely generated groups. For each vertex group
Gy, let S, be a finite generating set for GG,,, then define S to be Uvev(r) Sy. Throughout this
section, d will denote the word metric on G with respect to S. We now begin to explicitly
construct the HHS structure on Gyr. We first define the index set, associated spaces, and
projection maps in Section 4.1.1 and then define the relations and relative projections in

Section 4.1.2.

4.1.1 The index set, associated spaces, and projections.

The index set for our relative HHS structure on Gt is the set of parallelism classes of graphical

subgroups. This mirrors the case of right-angled Artin groups studied in [BHS17b|.

Definition 4.1.1 (Parallelism and the index set for a graph product). Let Gr be a graph
product. For an induced subgraph A < I', we shall use gA to denote the coset g{A) for ease
of notation. We say gA and hA are parallel if g~ *h € (st(A)) and write gA || hA. Let [gA]
denote the equivalence class of gA under the parallelism relation ||. Define the index set

Sr={[gA]:ge Gpr, AT}

The geometric intuition for the definition of parallelism comes from the fact that if two
cosets g{A) and h(\) satisfy g~'h € (st(A)), then they are each crossed by precisely the same
set of hyperplanes of S(I'). Recall that these hyperplanes, introduced in Definition 2.6.17,

are generalisations of those in cube complexes.

Proposition 4.1.2 (Parallel cosets have the same hyperplanes). Let A < T" and g, h € Gr.
If g(A) || K{A), then every hyperplane of S(T") crossing g{A) must also cross h({\).

Proof. Since g{A) || h{A), g7 h € {(st(A)) and there exists A € (A) and [ € (Ik(A)) such that
g 'h = Al. Since X and [ commute, g~ 'h(A) = I(A).
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Let H be a hyperplane in S(T") crossing g{A). In particular, H separates two adjacent
points ga and gb in g{A). Translating by g—!, we have that ¢g~' H separates a and b in (A).
Let s1...s, be a reduced syllable expression for [. Thus, there is a geodesic from a to la and
a geodesic from b to [b each labelled by s; ...s, where each s; € (Ik(A)). Since b 'a labels
an edge of (A), b~'a and s; span a square for each i € {1,...,n}. Thus we have a strip of
squares joining the edge between a and b to the edge between la and [b with the hyperplane
¢~ 'H running through the middle. Hence g~ H crosses [{A) = g7'h(A) and by translating
by g, H crosses h{/\). ]

The hierarchy structure on a graph product on n vertices can be thought of as being built
up in n levels, with level k consisting of the subgraphs with &k vertices. Whenever we build
up to the next level in the hierarchy, we need to record precisely the geometry we have just
added; any less will violate the uniqueness axiom, while any more may violate hyperbolicity.
When defining our spaces C(gA), we therefore do not want to record any distance travelled

in strict subgraphs of A. This leads us to the subgraph metric.

Definition 4.1.3 (Subgraph metric on a graph product). Let G be a graph product. Define
C(T") to be the graph whose vertices are elements of G and where g, h € G are joined by an
edge if there exists a proper subgraph A < I' such that g=*h € (A), or if g~'h is an element
of the generating set S defined at the beginning of the section. We denote the distance in
C(T') by dr(+,-) and say dr(g,h) is the subgraph distance between g and h. When T is a
single vertex v, C(I") = C'(v) is the Cayley graph of the vertex group G, with respect to the
finite generating set S. Otherwise, dr(e, g) is equal to the smallest n such that g = A; ...\,
with supp(A;) a proper subgraph of I' for each i € {1,...,n}.

If g = Ay ...\, where supp();) is a proper subgraph of I" for each i € {1,...,n}, then we
call Ay ...\, a subgraph expression for g. If n = dr(e, g), then Ay ...\, is a reduced subgraph
expression for g. Note that when I' is a single vertex, there are no subgraph expressions.

Remark 4.1.4. When I has at least 2 vertices, S(I') is obtained from Cay(Gr, S) by adding
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extra edges, where S is the generating set defined at the beginning of the section. Likewise
C(T") is then obtained from S(I') by adding even more edges. It therefore follows that

dr < d,, < d, where d is the word metric on Gr induced by S.

In a reduced subgraph expression g = A; ...\, we may assume suffix,,  (A;...\;) = e

i+1 (
for each i € {1,...,n — 1} by removing any non-trivial suffix from the end of A;...\; and
attaching it to the beginning of \;;;. By repeating this procedure for each ¢ in ascending

order and then writing reduced syllable expressions for each \;, we then obtain a reduced

syllable expression for g.

Lemma 4.1.5. IfT" contains at least 2 vertices, then for each g € Gr, there exist A\1,..., A\, €

Gr with supp(\;) = A; € T such that the following hold.
(1) A1 ...\, is a reduced subgraph expression for g.

(2) For eachie{l,...,n— 1}, suffixy, ,(A\1...\;) = e.

1+1
(3) 1glsyr = [A1 - Anlsyr = 22;1 Ay

In particular, for each x,y € Gr, there ezists an S(I')—geodesic v connecting = and y such
that if M1 ...\, is the above reduced subgraph expression for x~ 'y, then the element xA; ... \;

is a vertex of v for each i€ {1,...,n}.

Proof. We begin by noting how the final conclusion of the lemma follows from the main
conclusion. Let \; ...\, be a reduced subgraph expression for =1y that satisfies (3). For
each i € {1,...,n}, let s{...s!, be a reduced syllable expression for \;. Since |z y[s =
AL Al = 20521 [Ajlsys it follows that (sj...sp, )...(s7...sp ) is a reduced syllable
expression for z7'y. Hence, there exists an S(I")-geodesic n from e to z7'y whose edges
are labelled by (s]...sL )...(s7...s" ), and this implies the element \; ... \; appears as a

TTmy mn

vertex of 7 for each i € {1,...,n}. Translating by x gives v = xn as the desired geodesic.
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We now prove we can find a reduced subgraph expression satisfying (2) and (3) for any
element of Gr. Our proof proceeds by induction on n = dr(e, g). If n = 1, then supp(g) is a
proper subgraph of I' and the conclusion is trivially true.

Assume the lemma holds for all h € Gr with dr(e,h) < n — 1 and let g € Gr with
dr(e,g) = n. Let w; ...w, be a reduced subgraph expression for g. Let Q; = supp(w;) for
each i € {1,...,n}. By the induction hypothesis, we can assume gy = wy ... w,_; satisfies the
conclusion of the lemma. Hence, |w; ... wp_1|sy = Z;:ll |wjlsy and suffixg, (w1 ...w;) = e

forie{l,...,n—2}.

)

Let o0 = suffixg, (w1 ...w,_1). For each ¢ € {1,...,n — 1}, let s} ...s"

. be a reduced

syllable expression for w;. Now, (sj...sp, )...(sP...s" ) is a reduced syllable expression

TTma Mnp

for wy...wp_1 a8 Wi ... wWp_1lsy = 23:11 |wj|syi- Thus, each syllable of ¢ is a syllable of one
of wy,...,w,_1. Foreach i € {1,...,n— 1}, let j; < --- < j; be the elements of {1,...,m;}

such that st

[T 753; are the syllables of w; that are not syllables of 0. Forie {1,...,n— 1},

i o / / _
.85 Thus, we have wy ... wp 1 = w .. .w,_ 0 where suffixg, (W ...w;, ;) =e.

)

r_
let w; = s}

cn—1

/

Let w!, = ow,. Thenw} ... w!, _;w! is areduced subgraph expression for g with supp(w/,) =

2, and suffixg, (W] ...w),_;) =e. Let ¢ =w|...w/,_;. Since wj ...w, is a reduced subgraph

/
n—1

expression for g, then /... w/, ; is a reduced subgraph expression for ¢’. Hence, dr(e,¢') =
n—1 and the induction hypothesis says there exists a reduced subgraph expression A\; ...\,
for ¢' such that suffixguppn,)(A1-..Ai) = e for i € {1,....,n =2} and |A;... Apoi]sy =
27;11 |Ajlsyr- Further, suffixg, (A1 ... \pm1) =eas A ...y = ¢ =W ... w,_;.

Now let A, = w/, and A; = supp();) for each i € {1,...,n}. We verify that A\y,..., \,

satisfies the conclusion of the lemma for g.

(1) A1...\, is a reduced subgraph expression for g as each A; = supp()\;) is a proper

subgraph of T" and dr(e, g) = n.
(2) For each i€ {1,...,n— 1}, the above shows suffixy,,, (A1... \;) = e.

(3) We prove that writing each \; in a reduced syllable form produces a reduced syllable form
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for the product A;...\,. For each i € {1,...,n}, let ! .. t}Q be a reduced syllable ex-
pression for ;. Since [\ ...\ _1|sy = Z;:_ll [ Ajlsyt, we know (¢ ... ¢4 ) (87T )
is a reduced syllable expression for A;...\,_1. Thus, if (t]...¢; )...(t7...1} ) is not
a reduced syllable expression for Ay ... \,, then Theorem 2.6.6 implies there must exist
syllables ¢/ of Ay ... A\,_1 and t} of A, such that supp(t}) = supp(t) and ¢’ can be moved
to be adjacent to ¢} using a number of commutation relations. However, this implies t;'» is
a suffix for Ay ... \,_1 with support in A,,. This is impossible as suffixy, (A1 ... \,_1) = €.

Therefore, (t1 ...t} )...(t} ...t} ) must be a reduced syllable expression for A ... A, and

hence | A1 ... Aplsyr = [Alsyr + - + | An|sy as desired. O

We can now define the geodesic spaces associated to elements of the index set. In the

next section, we will show that they are hyperbolic.

Definition 4.1.6. Let G be a graph product. For each g € Gr and A < T, let C'(gA) denote
the graph whose vertices are elements of the coset g(A) and where gx and gy are joined by

an edge if x and y are joined by an edge in C'(A). The metric on C(gA) is denoted dg (-, -).

Remark 4.1.7. If A € ' is a join A = Ay » Ay, then every element A € (A) can be written
as A = M Ay where A; € (Ay) and Ay € (Ay). Since A and A, are proper subgraphs of A, this

implies C'(A), and therefore C'(gA), has diameter at most 2 whenever A splits as a join.

We now wish to use our gate map from Proposition 2.6.22 to define projections for our
hierarchy structure. Since Gr is the set of parallelism classes of cosets of graphical subgroups,

we must verify that the gate map is well-behaved under parallelism.

Lemma 4.1.8 (Gates to parallelism classes are well defined). If gA || hA, then for all x € Gr,

A () = gna © gga (). In particular, if gA || hA, then gpalgay: g(A) — h{A) agrees with the

1

isometry of S(T') induced by the element hpg™t, where p = prefix,(h~1g).

Proof. Suppose that gna(z) # gna(gga(x)). There must then exist a hyperplane H separating

gna(z) and gpa(gga(x)) in S(I'). By (4) and (5) of Proposition 2.6.22, H separates x and
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gya(z) and thus cannot cross g(A). However, H crosses h(\), and so must cross g{A) by
Proposition 4.1.2. As this is a contradiction, we must have that gna(z) = gra(gga(2)).
Note, if g\ € g(A), then equivariance (Proposition 2.6.22(2)) plus the prefix description

of the gate map (Lemma 2.6.24) imply

gra(gA) = h-ga(h7'g\) = h - prefix, (A gA).

Since h™'g € (st(A)), we can write h='g = pl, where p € (A) and [ € (Ik(A)). Therefore
gna(gA\) = h - prefix, (pI\) = hpA, that is, graleay agrees with the isometry induced by
hpg=1. O

Since Cay(Gr, S), S(I') and C(I") differ only in that the latter two have extra edges, we

can easily promote our gate map to a projection map.

Definition 4.1.9. For all A € I' and g € Gr, define myp: Gr — C(gA) by iz © gga where

iga is the inclusion map from g{A) into C'(gA).

Remark 4.1.10. Combining the prefix description of the gate map (Lemma 2.6.24) with
equivariance (Proposition 2.6.22.(2)), we have that g, (z) = g - prefix, (¢ 'x) for all z €
Gr. Since the only difference between 7y, and g, is the metric on the image, this means

mga(x) = g - prefix, (¢~ z) as well.

Note that any coset of (A) can be expressed in the form g{A) where suffix,(g) = e (and
thus prefix, (¢7!) = €). Indeed, let h{A) be a coset of (A), and suppose suffix (k) = A\. Then
we can write h = g\, where suffixy(g) = e. It therefore follows that h({A) = gA\(A) = g(A).
The next proposition shows that choosing the representative of g{A) in this way ensures that
prefix, (g~ ') contains only syllables of . This is particularly helpful when considering the

prefix description of mya(z).
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Proposition 4.1.11. Let A < T" and let g € Gr. Then for all x,y € Gr, every syllable of
(gga(2)) 7 - ggay) is a syllable of x~y. In particular, if g is the representative of g{A\) with

suffix,(g) = e and h € Gr, then every syllable of prefix, (g~ 'h) = ga(g~h) is a syllable of h.

Proof. Let x,y € Grp, then let p, = gga(z) and p, = gya(y). Let n be an S(I')-geodesic
connecting p, and p, and let v be an S(I')-geodesic connecting = and y. Let sq,...,s, be
the elements of the vertex groups of Gr that label the edges of 1. This means sy, ..., s, are
the syllables of p;'p,. For each i € {1,...,n}, let H; be the hyperplane dual to the edge of
71 that is labelled by s; and let v; be the vertex of I' such that s; € G,,,.

By Proposition 2.6.20(4) and Proposition 2.6.22(5), since each H; separates gya(z) and
944 (y), each H; must also cross y. Fori e {1,...,n}, let E; be the edge of v dual to H;. Note,
every edge dual to H; is labelled by an element of the vertex group G,,, but not necessarily
by the same element of G, .

If E; is not labelled by s; € G,,, then the hyperplane H; must encounter a triangle
of S(I') between n and ~. This creates a branch of the hyperplane H; that cannot cross
either 7 or v by Proposition 2.6.20(4). Thus, this branch must cross either an S(I")—geodesic

connecting = and p, or an S(I')-geodesic connecting y and p,; see Figure 4.1. Without
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Figure 4.1: If the hyperplane H; encounters a triangle of S(I') between n and +, then a
branch of H; must cross an S(I')-geodesic from z to p, (shown) or from y to p,,.

loss of generality, assume H; crosses an S(I')-geodesic connecting x and p, = gga(z). This

means H; separates = from gy (2), and thus H; must separate x from all of g(A) (Proposition
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2.6.20(4)). However, this is impossible as H; crosses g(A). Therefore H; cannot encounter
a triangle between 1 and 7, and F; must therefore be labelled by the element s;. Since the
elements labelling the edges of ~y are the syllables of 2™y, this implies every syllable of p; 'p,
is also a syllable of z71y.

For the final clause of the proposition, note that suffixy(g) = e implies ga(g™') =

1

prefix, (g7!) = e. Thus, we can apply the above with z = ¢g~! and y = g~'h to conclude that

every syllable of (ga(g™!))tga(g'h) = ga(g'h) is also a syllable of (¢7')1g~'h=h. O

Given h,k € Gr, we shall employ a common abuse of notation by using dga(h, k) to

denote dga(mga(h), mya(k)). We can now prove our first HHS axiom.

Lemma 4.1.12 (Projections). For each g € Gr and A < T, the projection myy is (1,0)-

coarsely Lipschitz.

Proof. We want to show that dya(z,y) < d(z,y) for all x,y € Gr. First assume A consists
of a single vertex v. Let p, and p, be gya(z) = mya(x) and gya(y) = mya(y) respectively.
Since A is the single vertex v, C'(A) is the Cayley graph of G, with respect to our fixed finite
generating set, and C'(gA) is a coset of C'(A). Thus, it suffices to prove |p,'p,| is bounded
above by |[r7!y|, where | - | is the word length on Gr with respect to the generating set S
defined at the beginning of the section.

Let s = p,'p, € G,. By Proposition 4.1.11, s must be a syllable of 'y, that is, s
appears in a reduced syllable expression for 7 'y. Recall, if s;...s, is a reduced syllable
expression for z71y, then [z~ 1y| = 37" | |s;] (Corollary 2.6.7). Thus |z~ 'y| = |s| = |p; 'p,l.

Now assume A contains at least 2 vertices. By Proposition 2.6.22(1), we have

dsyl(ggA(x)7ggA(y)) < dsyl(«ra y) < d(l’,y)

Furthermore, C'(gA) is obtained from S(gA) by adding edges as A contains at least two
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vertices. Thus we have

dgA(:L‘7y) < dsyl(gg/\(x)vgg/\(y)) < dsyl(x7y> < d(l‘7y) O

Given an S(I')-geodesic v, there is a natural order on its vertices which arises from
orienting . The distances between the vertices of v under the projection g then satisfy

the following monotonicity property with respect to this order.

Lemma 4.1.13 (Subgraph distance along S(I')-geodesics). Let v be an S(I')-geodesic con-
necting two elements x,y € Gr. For each vertex q of vy, each element g € Gr, and each

subgraph A < T, we have

dgA(x7Q) < dgA(xvy) and dg/\(qv y) < dgA(x7y)'

Proof. Fix g € Gr and a subgraph A € I'. Let p, = gga(x), py = 944 (v), and p, = g4a(q)-

First suppose A consists of a single vertex of I'. Then the S(I')-diameter of g(A) is 1 and
there exists a single hyperplane H so that every edge of g(A) is dual to H. If p, # p, and
Dg # Py, then H must separate p, from both p, and p,. Therefore, H must cross v between
x and ¢ and again between ¢ and y by Proposition 2.6.22(5). However, this is impossible
as H cannot cross v twice (Proposition 2.6.20(4)). Thus we must have either p, = p, or
Pq = Dy The conclusion of the lemma then automatically holds as mya(q) = mga(z) or
man(q) = Tga(y)-

Now assume A has at least two vertices and p, # p, and p, # p,. Let A\;... A, be a
reduced subgraph expression for p,'p, of the form provided by Lemma 4.1.5, so that there
exists an S(I')-geodesic 7 connecting p, and p, whose vertices include p,A; ... \; for each
ie{l,...,m}.

Let o and 8 be S(I')-geodesics connecting p, to p, and p, to p, respectively. Any

hyperplane that crosses a must also cross v and separate x and ¢ by Proposition 2.6.22(5).
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Similarly, any hyperplane that crosses S must also cross 7 and separate y and g. Thus,
a hyperplane that crosses both a and § would cross the S(I')—geodesic v twice. Since no
hyperplane of S(I') can cross the same geodesic twice (Proposition 2.6.20(4)), it follows that
any hyperplane that crosses « (resp. () cannot cross § (resp. «). By Remark 2.6.21, any
hyperplane that crosses either a or § must therefore cross  as o U § u 1 forms a loop in
S(T).

We now prove dgp (x, q) < dga(z,y). The proof for dya(q, y) < dga(z,y) is nearly identical
with 3 replacing a. Let Ej,..., E} be the edges of a and let H; be the hyperplane that
crosses E; for j € {1,...,k}. We say that two hyperplanes H; and Hy cross between o and
n if there exists a vertex a of v such that for each vertex b of ), either H; or H, separates a

from b; see Figure 4.2.

Hy,
Hk_QI_{k:fl

Dq

pm n 'py

Figure 4.2: The hyperplanes Hy_5 and Hj_; cross between a and 7 because the vertex a is
separated from every vertex of n by either Hy o or Hp_;. Even though Hy 5 and Hj cross,
they do not cross between o and 7).

Claim 4.1.14. There exists an S(I")-geodesic o/ that connects p, and p, such that no two

of Hy,..., Hy cross between o' and 7.
Proof. Let ay = a and let K; be the number of times two of Hy, ..., Hy cross between «;
k(k—1)

and 7. Note, K; < . If K; = 0 we are done. Otherwise, there exists j € {1,...,k}

2
such that H; is the first hyperplane where H;_; and H; cross between «; and 7. Since H;_;
and H; cross, Proposition 2.6.20(5) tells us the edges £;_; and E; are labelled by elements

of adjacent vertex groups. By Proposition 2.6.14, E;_; and E; are two sides of a square S
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of S(I') inside which H;_; and H; cross. Let ay be the S(I')-geodesic obtained from oy by

replacing the edges F/;_; and £ with the other two sides of the square S; see Figure 4.3.

Hy o 1 P

L 4

®

Pa Py

Figure 4.3: The edges F;_; and E; can be replaced with the other two edges of the square
S to obtain a new S(I')-geodesic with Ky = K7 — 1.

Since H;_; and H; crossed between oy and 1, we now have Ky = K; —1, that is, that the
number of times two of Hy, ..., Hy cross between as and 7 is one less than the number of
times two of Hy, ..., Hj, crossed between «; and 1. Reindex Hj, ..., Hj such that H; crosses

the jth edge of as.

If Ky =0, we are done, with o/ = . Otherwise, can repeat this argument at most @
times to construct a sequence of geodesics oy, ao, ..., a, where K;,; = K; — 1 and K, = 0.
Then, o/ = «,. O

Let o be as in Claim 4.1.14 and reindex Hj, ..., Hj, so that H; crosses the jth edge of o
for each j e {1,...,k}. Since H; crosses n for each j € {1,...,k}, the labels for the edges of
o/ are a subset of the labels of 7. Further, since no two of Hy, ..., H; cross between o’ and 7,
the order in which the labels of edges appear along o' is the same as the order in which they
appear along 7. Since the vertices of 1 include p,\; ... \; for each i € {1,...,m}, this implies
that we can write p,'p, = N, ...\,,, where supp()\,) < supp()\;) for each i € {1,...,m}.

It therefore follows that the C'(gA)-distance between p, and p, is bounded above by the

C(gA)—distance between p, and p,, and so we have dga(z,q) < dga(z,y). O
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4.1.2 The relations

Here we define the nesting, orthogonality, and transversality relations in the proto-hierarchy

structure, and prove they have the desired properties. We tackle the nesting relation first.

Definition 4.1.15 (Nesting). Let Gr be a graph product and let Sr be the index set of
parallelism classes of cosets of graphical subgroups described in Definition 4.1.1. We say

[gA] = [h2] if A < 2 and there exists k € G such that [kA] = [gA] and [kQ] = [RQ].
Lemma 4.1.16. The relation E is a partial order.

Proof. The only property that requires checking is transitivity, that is, if [g1A1] = [g2As]
and [g2A2] E [g3As], then [g1A1] E [g3As].

Since C is transitive, we have Ay € Az. Furthermore, there exist a,b € Gr such that
[91A1] = [aAd], [ads] = [g272] = [bA3], [g5A5] = [DAs], that is, g 'a € (st(A1)), g5 'a, g5 b €
(st(A2)), g3'b € (st(Az)). Thus g;'a = 1A, g5'a = lodg, g5 'b = 1bN,, g5'b = I3A3 where
Ai, N e (A;) and [;, 1} € (Ik(A;)) for each 4. Let ¢ = b(Ay) "' Xo. Then gz'c = g3 'b(\)) 1Ay €

(st(As)) since Ay € A3. Moreover, since lk(Aq) < 1k(A1),

gflc = gflaaflgggglbbflc
= llAlAgllz—ll;A;(Ag)‘lAg

= l1l2_ll/2>\1 € <St(A1)>

Thus [g1A1] = [¢A1] and [g3As] = [cA3], verifying that [g1A1] E [g3As]. O

Definition 4.1.17 (Upwards relative projection). If [gA] & [h€2], for any choice of repre-
sentatives gA € [gA] and hQ) € [hQ], define pfh = C(hQ) to be

pho = |J ma(k)) = malg(st(n))).

kAllgA
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The equality between [ J; 51 Tho (k(A)) and mhq (g¢st(A))) is a consequence of the definition
that kA || gA if and only if g7'k € (st(A)). Indeed, g{st(A)) = gg ' k{st(A)) = k(st(A)) 2
k(A) for all kA || gA. Conversely, each element of g{st(A)) can be written as gl\A where
[ € {dk(A)) and X € (A), so that gI\ € gl{A) where g~ gl = [ € (st(A)) and hence gA || glA.

Lemma 4.1.18 (Upwards relative projections have bounded diameter). If [gA] = [h€2],

then for any choice of representatives gA € [gA] and h$2 € [hY], we have diam <pig> < 2.

Proof. Let gA and h$) be fixed representatives of [gA] and [h€2] respectively. Suppose first
that Q splits as a join. Then diam(C'(h€2)) = 2 by Remark 4.1.7, and hence diam <p%) < 2.
For the remainder of the proof we will therefore assume that {2 does not split as a join. Note
that this implies that st(A) n Q < Q. Indeed, suppose st(A) N Q = . Then Q < st(A), so
either Q@ € A, Q < 1k(A), or Q splits as a join. The first two cases are impossible as A < Q,
and the last case is ruled out by assumption.

Let a € Gr be such that [aA] = [gA] and [af2] = [h€2]. Since [aA] = [gA], we have g7'a €
(st(A)), so g{st(A)) = gg~talst(A)) = alst(A)). Thus pis = mua(glst(A))) = mua(alst(A))).
Note that any element of a{st(A)) can be expressed in the form aAl where A\ € (A) and
l € {Ik(A)). Using equivariance (Proposition 2.6.22(2)) and the prefix description of the gate

map (Lemma 2.6.24), we have
dan(all) = a- go(a tall) = a - prefixg (M) = a - prefixq(1).

This implies gao(a)l) = aXo, where ly = prefixg(l) € (k(A) A Q) and so supp(\lo) <
Au (Ik(A) n Q) = st(A) n Q2 < Q. Moreover, by Lemma 4.1.8, gna(aXl) = gra(gun(aXl)) =
gral(aXly).

Since af) || hQ2, the gate map from a(§2) to h{) agrees with the isometry of S(I")

1

induced by the element hpa~! where p = prefix, (h~'a) (Lemma 4.1.8). Since supp(Aly) < €,

this implies gna(aXly) = hpa™' - ally = hpMly. Therefore, given two arbitrary elements
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all,aN'l" € alst(A)), we have (gna(all)) " tgna(aNl’) = 5" AN, where supp(ly ' A NI)) <
st(A) N Q < Q. This implies the C(hQ)-diameter of m,q(g{st(A))) = pla is at most 1 in this

case. [
Next we deal with the orthogonality relation.

Definition 4.1.19 (Orthogonality). Let Gt be a graph product and let G be the index set
of parallelism classes of cosets of graphical subgroups described in Definition 4.1.1. We say

[gA] L [A€2] if A < 1k(£2) and there exists k € Gr such that [kA] = [gA] and [kQ] = [hQ].
Lemma 4.1.20 (Orthogonality axiom). The relation L has the following properties:

(1) L is symmetric;

(2) If [gA] L[hY], then [gA] and [RY] are not =—comparable;

(3) If [gA] = [h82] and [RQ)L[KIT], then [gA]L[KIT].

Proof. (1) If A < 1k(Q2), then all vertices of A are connected to all vertices of €2, hence
2 < Ik(A) too. Thus the relation L is symmetric.

(2) Any graph is disjoint from its own link, hence if [gA] L[h€2] then [gA] and [h€2] cannot
be E-comparable.

(3) Suppose [gA] = [hQ2] and [AQ]L[EIT]. Then A < Q2 < 1k(IT), and there exist a,b € Gr
such that [aA] = [gA], [a€2] = [h2] = [b2] and [bII] = [KII]. In particular, this means
that b~'a € (st(Q2)), hence we can write b™'a = wl where w € (Q) and [ € {1k(Q2)). Then
w vt = 1 e dk(Q)) < {dk(A)) < {st(A)), and so [aA] = [bwA]. On the other hand,
w o™ = wt € () = Uk(IT)) < {st(IT)), and so [bII] = [bwII]. Therefore [gA] L [KIT],
because A < 1k(II) and [gA] = [bwA], [FII] = [bwIT]. O

Our final relation is transversality, which is a little more nuanced, since our [gA] and

[A€2] need not have a common representative k in this case.
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Definition 4.1.21 (Transversality and lateral relative projections). If [gA], [h€)] € & are
not orthogonal and neither is nested in the other, then we say [gA] and [h2] are transverse,
denoted [gA]M[RS2]. When [gA]h[h$2], for each choice of representatives gA € [gA] and
h&Y e [hQY], define p!¥ = C(gA) by

par = | moa () = moa (A(st(2))

KQAQ
The next lemma verifies that p;‘ff has diameter at most 2.

Lemma 4.1.22. If [gA]h[h€], then for any choice of representatives gA € [gA] and h§2 €
[, we have diam (mgs (h(st(Q)))) < 2 and diam(70(g(st(A)))) < 2.

Proof. We provide the proof for diam (74 (h(st(2)))) < 2. The other case is identical.

Let z,y € h(st(2)). Define p, = ma(x) = gya(z) and p, = mya(y) = gga(y). If A splits
as a join Ay x Ay, then dga(ps, p,) < diam(C(gA)) < 2 by Remark 4.1.7.

Now suppose A does not split as a join. Since p,,p, € g{A), we have supp(p;'p,) < A.
If supp(p, 'p,) is a proper subgraph of A, then the C'(gA)-distance between p, and p, will
be at most 1. Thus, it suffices to prove supp(p,'p,) # A.

Since [gA]h[hQ] we have that [gA] £ [hQ], [gA] & [RQ], and [A2] & [gA]. This can
occur in two different ways; either A & 1k(2), Q@ € A and A & €, or there does not exist
k € Gr so that [gA] = [kA] and [h§2] = [k9].

First assume A ¢ 1k(2) and A & Q. Since A does not split as a join, if A = st(Q2) N A,
then A would need to be a subgraph of either €2 or 1k(€2). As this is impossible in this case,
we must have that st(€2) n A # A. By Proposition 4.1.11, every syllable of p; 'p, is a syllable
of 27 1y. Since 71y € (st(Q)), this implies supp(p, 'p,) S st(Q) N A # A as desired.

Now assume A < 1k(Q2) or A < 2. Thus, there does not exist k € Gr so that [gA] = [kA]
and [hQ] = [kQ]. For the purposes of contradiction, suppose supp(p,'p,) = A.

Let s, and s, be the suffixes of  and y respectively such that x = p,s, and y = pys,.

99



Select the following S(I')-geodesics: «, connecting x and p,, «, connecting y and p,, 7
connecting p, and p,, 7 connecting x and y; see Figure 4.5.

Let t;...t, be the reduced syllable expression for s, corresponding to the geodesic a.
For each i € {1,...,n}, let H; be the hyperplane crossing the edge of «, labelled by ¢;. Recall,
a hyperplane in S(I") crosses a geodesic segment if and only if it separates the end points of
the segment (Proposition 2.6.20(4)). Each H; therefore separates x and p, = gy (), so each
H; must separate z from all of g(A) by Proposition 2.6.22(4). In particular, no H; crosses 1.
Thus, by Remark 2.6.21, each H; must cross either vy or «,. If H; crosses 7, then ¢; € (st(2)).
On the other hand, if H; crosses «, then H; must cross every hyperplane that separates p,
and p,; see Figure 4.4. Because supp(p,'p,) = A, it follows that for every vertex v of A there
exists a hyperplane that separates p, and p, and is labelled by v. Hence, if H; crosses ay,
then H; crosses at least one hyperplane that is labelled by each vertex of A. By Proposition
2.6.20(5), if two hyperplanes cross then they are labelled by adjacent vertices in I'. Thus,
the vertex labelling H; must be in the link of A. In particular, ¢; € (Ik(A)).

h(st(€2))

Figure 4.4: Any hyperplane that crosses a, and a, must cross all of the hyperplanes sepa-
rating p, and p,.

The above shows that ¢; € (st(Q)) or t; € (dk(A)) for each i € {1,...,n}. Further,
ti € (st(Q)) if H; crosses v and t; € (Ik(A)) if H; crosses «,,. Now suppose ¢ < j and that
H; crosses v, but H; crosses a,. As shown in Figure 4.5, this forces H; to cross H;, which

implies that ¢; and ¢; commute by Proposition 2.6.20(5). Thus, by commuting the syllables
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of s, we have s, = l,w, where w, € {(st(2)) and [, € (dk(A)).

Figure 4.5: The hyperplane H, crosses o, and « while H; crosses a, and «,. Since H;
appears before H; along a,, H; must cross H;.

Now, since x € h(st(Q)), we have h™'x € (st(2)), which implies [hQ] = [2)]. Since z =
PuSy = Dalowy, we have [2Q] = [p,l,w,Q] = [p,1,Q]. Similarly, p, € g(A), so g7'p, € (A),
which implies [gA] = [poA]. Now, [peA] = [peleA] a5 p; (pele) = Lo € CIK(A)) < (st(A)).
Thus we have

(7] = [p:l2$2] and [gA] = [pal.A].

However, this contradicts our assumption that there is no k € Gr such that [hQ2] = [kQ] and

[gA] = [kA], proving we must have supp(p, 'p,) # A as desired. O

4.1.3 The proto-hierarchy structure

We now combine the work in this section to give a proto-hierarchy structure for Gr.

Theorem 4.1.23. Let Gr be a graph product of finitely generated groups. For each paral-
lelism class [gA\] € Sr, fix a representative g\ € [gA]. The following is a 2—proto-hierarchy

structure for (Gr,d).

o The index set is the set of parallelism classes Gr defined in Definition 4.1.1.

e The space C([gA]) associated to [gA] is the space C(gA) from Definition 4.1.3, where

g\ is the fized representative of [gA].
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o The projection map mgay: Gr — C([gA]) is the map mgp: Gr — C(gA) from Definition

4.1.9 for the fized representative g\ € [gA].

e [gA] = [hQ] if A € Q and there exists k € Gr such that [kA] = [gA] and [kQ2] = [hQ].

e The upwards relative projection p{i?z]] when [gA] = [hQY] is the set pi?z from Definition

4.1.17, where gA and h$) are the fized representatives for [hS)] and [gA].

o [gA] L [hQ2] if A € k() and there exists k € Gr such that [kA] = [gA] and [kQ] =
[hQ].

o [gA]A[hQ] whenever [gA] and [hY] are not orthogonal and neither is nested into the

other.

e The lateral relative projection ,ob’;g]] when [gA]M[hS2] is the set pig from Definition
4.1.21, where g\ and hS) are the fized representatives for [hQ2] and [gA].

Proof. The projection map g is shown to be (1,0)—coarsely Lipschitz in Lemma 4.1.12.
Nesting is shown to be a partial order in Lemma 4.1.16. The upward relative projection has
diameter at most 2 by Lemma 4.1.18. Lemma 4.1.20 shows that orthogonality is symmetric
and mutually exclusive of nesting, and that nested domains inherit orthogonality. The lateral

relative projections have diameter at most 2 by Lemma 4.1.22. O

4.2 Graph products are relative HHGs

In this section, we complete our proof that graph products of finitely generated groups are
relative HHGs (Theorem 4.2.22) by proving the eight remaining HHS axioms and showing
that the group structure is compatible with our hierarchy structure. In Section 4.2.1, we
prove hyperbolicity of C'(gA) whenever A contains at least two vertices. Section 4.2.2 is

devoted to proving the finite complexity and containers axioms. Section 4.2.3 deals with the
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uniqueness axiom, and in Section 4.2.4, we the prove the bounded geodesic image and large
links axioms. In Section 4.2.5, we verify partial realisation, and Section 4.2.6 deals with the
consistency axiom. Finally, in Section 4.2.7, compatibility of the relative HHS structure with
the group structure is checked.

We also obtain some auxiliary results along the way: in Section 4.2.1, we show that
not only are the spaces C'(gA) hyperbolic whenever A contains at least 2 vertices, but they
are also quasi-trees; and in Section 4.2.3, we use uniqueness to give a classification of when
C(gA\) has infinite diameter.

We conclude the section by remarking that the syllable metric on Gt is a hierarchically
hyperbolic space. This is true even when the vertex groups are not finitely generated.
However, until then we will continue to assume Gr is a graph product of finitely generated
groups and that d is the word metric on G, where the generating set for Gr is given by

taking a union of finite generating sets for each vertex group.

4.2.1 Hyperbolicity

Lemma 4.2.1 (Hyperbolicity). For each [gA] € &r, either [gA] is E-minimal or C(gA) is

7 .
5 —hyperbolic.

Remark 4.2.2. The hyperbolicity of C'(gA) can also be deduced from [Genl8, Proposi-
tion 6.4]. The proof presented below uses a different argument that produces the explicit

hyperbolicity constant of %

Proof. Take [gA] € &r and suppose it is not =—minimal, i.e., A contains at least two vertices.

Let z,y,z € C(gA) be three distinct points and let ~;,72,73 be three C(gA)-geodesics

connecting the pairs {y, z}, {2, 2}, {z, y} respectively. We wish to show this triangle is %f

slim, that is, we will show that 7, is contained in the %—neighbourhood of 79 U 3. Since

C(gA) is a metric graph whose edges have length 1, it suffices to show that any vertex of 7,

is at distance at most 3 from v, U 7s.
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Let pi, ..., ph, be the vertices of 4;, and let ] be the path in S(gA) obtained by connecting
each pair of consecutive vertices p; and p},, with an S(gA)-geodesic a}. Since o} is labelled
by vertices of supp((p?)’lpﬁ +1), which is a proper subgraph of A, the C'(gA)-distance between

)

any vertex of «;

and p} or pi,, is at most 1. It therefore suffices to show that given any
vertex p; of i, either aj_; or oj is C(gA)-distance 1 from some af with i = 2 or 3. See

Figure 4.6.

Y

Figure 4.6: For each edge of the C(gA)—geodesic triangle, we construct an S(gA)-geodesic
segment oz;- between its endpoints (shown in blue). To show the triangle is %—slim, it then

suffices to show that for each j, aj ; U oj is C(gA)-distance 1 from some o with i # 1.

If A has no edges, then (A) is the free product of the vertex groups, hence S(gA) is a tree
of simplices, that is, any cycle in S(gA) is contained in a single simplex (a coset of a vertex
group). Therefore any two paths in S(gA) with the same endpoints are contained in the
1-neighbourhood of each other, and in particular ] is contained in the 1-neighbourhood of
5 U 4. Thus, any vertex of 7 is at distance at most 3 from 5 U 3 in C(gA).

Now suppose A has at least one edge, so that it has a vertex w with non-empty link. We
may also assume that A does not split as a join; otherwise, C'(g/A) has diameter 2 by Remark

4.1.7 and hence is clearly I-hyperbolic. Take a vertex p} of y;. If p} is one of the first or last
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4 vertices of 1, then it is at distance at most 3 from v, or 3. Otherwise pjl- is an endpoint
of two consecutive edges L;_; and L; of v, labelled by strict subgraphs A;_; and A; of A.
We must have Aj_; U Aj = A, as otherwise we could replace these two edges with a single
edge, contradicting v; being a C'(gA)—geodesic. It follows that all vertices of A appear as
labels on the edges of the geodesic segments 04]1-_1 and ajl- of 4} corresponding to L,_; and
L;. Consider the collection &, of edges of a}_l v 04]1- labelled by the fixed vertex w with
k(w) n A # &, and consider the collection #H,, of hyperplanes in S(gA) dual to the edges in
Ew. We proceed to construct an S(gA)-path from an edge of &, to some o} with i = 2 or 3,
either by travelling through the carrier of a single hyperplane, labelled by st(w) n A < A, or
by following a sequence of combinatorial hyperplanes labelled by lk(w) n A < A. Since this
path will be labelled by a proper subgraph of A, the C(gA)-distance between its endpoints
will be 1.

Suppose some hyperplane H € H,, also crosses a geodesic segment a! of 75 U 74. Since
the carrier of H is labelled by vertices of st(w) n A, and st(w) n A is a strict subgraph of A
because A does not split as a join, it follows that p} is at most C'(gA)—distance 3 from either
9 Or 73, as desired.

Suppose therefore that no hyperplane of #H,, crosses 7, U 5. This means that each
H € H,, must cross 7, a second time (Remark 2.6.21). Further, Proposition 2.6.20(5) tells
us that no two hyperplanes labelled by the same vertex may cross each other. It follows that
there exists an outermost hyperplane Hy of H,,; that is, no hyperplane of H,, crosses edges
of 74 both earlier and later than Hy does. Moreover, Hy has an outermost combinatorial
hyperplane H|; see Figure 4.7. Note that since this combinatorial hyperplane is labelled
by vertices of lk(w) n A < A, the C(gA)-distance between any two points on H/ is 1. In
particular, since v; is a C(gA)-geodesic, it follows that the segments o and «; that H}
intersects must satisfy |k —r| < 2. As we know that Hy crosses aj_; U «j, this implies Hj

must intersect 04]1-_1 U 0431. too. Recalling that a hyperplane may not cross the same geodesic
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twice (Proposition 2.6.20(4)), we may therefore suppose without loss of generality that r = j

and j < k < j + 2 (the cases where j —2 < k < j or r = j — 1 proceed similarly).

/
H()
-~ - -~
,’ ~ - \\
1
Ve
/ 1 HO \\
1
/ | \
051.71 04]1- . —
w J w 7/ . w
w w
Dj—1 Py Dj+1 Pj+2

Figure 4.7: The outermost hyperplane Hy of H,, and its outermost combinatorial hyperplane
Hi.

Let Ey be the edge of &, on ozjl» that H, crosses, and let e; and e; denote its endpoints.
Let Fy be the edge of aj labelled by w that Hy crosses, and denote its endpoints by f
and fo. Then there is a path n connecting e; and f, that is contained in the combinatorial
hyperplane H{| labelled by vertices of lk(w) n A & A. Furthermore, if w does not appear
as a label of an earlier edge of o or a later edge of oy, then dga(pj,pi,,) = 1 as the path
obtained by travelling from pJ to ey along a , then from e; to f; along 7, then from f5 to
Piy1 along a is labelled by the proper subgraph A \ w. This contradicts the assumption
that 71 is a C(gA)—geodesic. On the other hand, if w appears as a label of an earlier edge
E_; of ozjl (take the closest one to Fp) but not a later edge of «, then the corresponding
hyperplane H_; must cross a segment o with [ < j (since Hy is outermost), and there exists
an S(gA)-path £ labelled by A\ w connecting e; and «;. Then the C'(gA)-distance between
the endpoints of the path £ U n is 1 and so we obtain dya(p},pi.;) < 2, a contradiction.
There therefore exists some edge labelled by w which appears after Fjy on aj. Let E; be the
closest such edge to Hy, and consider the hyperplane H; dual to FEj.

If Hy crosses o} with |s — j| > 3, then we obtain a contradiction since we have a path
in C(gA) from p; to pi,, (or pj,, to pl if s < j) of length at most 3. If H, crosses o with

|s — k| = 3, then similarly we obtain a contradiction. Assume therefore that |s — j| < 2 and
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|s — k| < 2. Note that since Hy and H; cannot cross, we must have s < j or s > k.

1

If s < j then we must have k = j +1 and s = j — 1. In this case, H; crosses a;

_1, which
contradicts our assumption that Hy is an outermost hyperplane of H,,.Thus H; cannot cross
any «! with s < k. This implies that if H; crosses a segment o’ with i = 2 or 3, then we can
conclude that pjl- is at most C'(gA)—distance 3 from either v2 or 73, by following a sequence

of geodesics labelled by vertices of lk(w) n A and contained in combinatorial hyperplanes

associated to Hy and Hy; see Figure 4.8.

Pj—1 p; p}+1

Figure 4.8: By following a sequence of combinatorial hyperplanes, we obtain a path labelled
by A\ w (shown in red) that must eventually leave ] and cross 5 U 74.

On the other hand, if H; crosses a! with s > k, then k = j + 1 and s = j + 2. Repeating
the same process, there must exist a later edge of ! labelled by w. Let Hy be the hyperplane
dual to the closest such edge to Hy. If Hy also crosses o where ¢t # s, then we must have
t<j=s—2o0rt>s=j+ 2, as Hy cannot cross the previous hyperplanes. However, the
first case results in |t — s| = 3, and the second case gives |t — j| = 3, both of which give
a contradiction. Therefore H, must cross a! where i = 2 or 3. Following the sequence of
geodesics labelled by vertices of A \ w, we again see that p} is at most C'(gA)—distance 3

from either 5 or ;. O]

A similar technique can moreover show that the spaces C(gA) are quasi-trees, by applying

Manning’s bottleneck criterion.
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Theorem 4.2.3 (Bottleneck criterion [Man05, Theorem 4.6]). Let Y be a geodesic metric

space. The following are equivalent:
(1) Y is quasi-isometric to some simplicial tree T';

(2) There is some A > 0 so that for all y,z € Y there is a midpoint m = m(y, z) with
d(y,m) = d(z,m) = %d(y, z) and the property that any path from y to z must pass

within a distance A of m.
Theorem 4.2.4. For each [gA\] € Gr, either [gA] is E-minimal or C(gA\) is a quasi-tree.

The proof of Theorem 4.2.4 proceeds similarly to the proof of Lemma 4.2.1, with the role
of 71 being played by a geodesic from y to z containing the midpoint m(y, z), and replacing

Y9 U 3 with an arbitrary path from y to z.

Proof. Suppose [gA] is not E-minimal. Let x,y € C(gA), let v be a C(gA)—geodesic con-
necting x and y, and let S be another C'(gA)-path from z to y. From v and 5 we may obtain
paths " and " in S(gA) by replacing each edge with a geodesic segment in S(gA). Note
that any point on such a segment is C'(gA)-distance 1 from the endpoints of the segment.
Let m be the midpoint of ~, so that m is either a vertex of v or a midpoint of an edge.

If A has no edges, then S(gA) is a tree of simplices in the same manner as in the previous
proof, and in particular any two paths in S(gA) between = and y are contained in the 1—
neighbourhood of each other. Applying this to 4" and ' shows that m is at distance at most
A= % from /.

Now suppose A has at least one edge, and let L; and Ly be two edges of « adjacent to m
(if m is the midpoint of an edge L, pick L and one edge adjacent to it). Then L; and Ly are
labelled by strict subgraphs A; and As of A such that A; U Ay = A. Thus either A; or Ay

contains a vertex w with non-empty link, and w therefore appears as a label of a hyperplane

crossing an edge of the corresponding geodesic segments «; and g of /.
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We can now repeat the argument in the proof of Lemma 4.2.1 to find a path connecting
a1 U ag to [ that is labelled by a proper subgraph of A. It follows that m is at most
C(gA)—distance A = I from §. O

4.2.2 Finite complexity and containers

Lemma 4.2.5 (Finite complexity). Any set of pairwise =-comparable elements has cardi-

nality at most |V (T')|.

Proof. If [gA] £ [hQ] and A and 2 have the same number of vertices, then we must have
A = Q and [gA] = [kA] = [kQ] = [hQ] for some k € Gpr. Therefore, any two distinct
C—comparable elements must have different numbers of vertices. Thus any set of pairwise

C—comparable elements has cardinality at most |V (I')]. O

Lemma 4.2.6 (Containers). Let [h€2] & [gA] be elements of &r. If there exists [kII] € Gp
such that [kII] = [gA] and [KII)L[RQY], then [KII] € [a(lk(2) n A)] = [aA] where a € Gr
satisfies [aA] = [gA] and [aQ2] = [RQ].

Proof. First, since [kII] = [gA] and [KII]L[AS2], we have II < A and II < 1k(©2), hence
IT < k(Q2) n A < A. Next, let b € Gr be such that [bII] = [KII] and [b2] = [h2], and let
¢ € Gr be such that [cII] = [KII] and [cA] = [gA]. We claim that there exists d € Gr such
that [KII] = [dII] and [a(k(©2) N A)] = [d(1k(€2) n A)], which would complete our proof.

Indeed, k~'a = k10~ 'a = k~'cc'a, and we know that supp (k') < st(IT), supp(b~ta) =
st(Q), supp(k~'c) < st(I), supp(c'a) < st(A). Writing p = prefixg g (k~"a), we have
p'k~la = s, where prefixqp(s) = e. That is, prefix,g(p~'k~'bb""a) = e. Since
p kb € (st(I)) and b~'a € (st(Q)), this implies p~'k~ta € (st(Q)). Similarly, writing
k™la = k7'cc™'a shows us that p~'k~ta € (st(A)).

That is, we can write k~'a = ps where p € (st(I)) and s € {(st(Q2) n st(A)). But
2 < A and 1k(A) < 1k(2), hence st(Q2) nst(A) = Q u lk(A) U (Ik(2) n A). Moreover,
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QuUlk(A) < Ik(lk(Q2) N A), hence s € {(st(lk(Q2) n A)). Thus k~tas™! = p e (st(II)) and
atas™! € (st(Ik(2) N A)). Letting d = as™!, we have [kII] = [dII] and [a(lk(Q2) N A)] =
[d(1k(©2) N A)] as desired. ]

4.2.3 Uniqueness

Here we prove the uniqueness axiom, which tells us that all geometry of Gr is witnessed
by some associated space C'(gA). This means we do not lose any geometric information
through our projections. We also use this axiom to classify boundedness of the hyperbolic
spaces C'(gA). In what follows, | - |¢. denotes the word length on Gr with respect to the

generating set S defined at the beginning of Section 4.1.

Lemma 4.2.7 (Uniqueness). Let Gr be a graph product of finitely generated groups. There
exists a function 0: [0,00) — [0,00), depending only on the number of vertices of ', so that

for all g € Gr, if dpa(e, g) < r for all h € Gr and subgraphs A = T, then |g|c. < 0(r).

Proof. Let r = 0. If T' is a single vertex, then the conclusion is immediate as the only
subgraph is I and C(T") = Gr. Suppose I' contains n + 1 vertices and assume the lemma
holds for any graph product of finitely generated groups whose defining graph contains at
most n vertices. Suppose g € Gr with dpa(e, g) < r for all h € Gr and subgraphs A < T'.

Since dr(e, g) < r, there exist proper subgraphs A; < I' and elements \; with supp(\;) =
A; so that g = A\j... A\, and dr(e,g) = m < r. We shall see that dyg(e,g) < r implies
dna(e, ;) is uniformly bounded for each 2 = A; and h € (A;). Since each (A;) is a graph
product on at most n vertices, induction will imply the word length of each A; is bounded,
which in turn will bound the word length of g.

If T' splits as a join I' = Ay x Ay, then any element g € Gr can be written in the form
g = Mg where \; € (A;) for i = 1,2 and |g|¢, = |Mler + [A2|er. Moreover, if h € (A;)
and Q < A;, then gno(g) = h - prefixg(h™'g) = h - prefixg(h™'\;) = gna(Ni). Therefore
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drale, \;) = dpale, g) < r and by induction there exists D = D(n,r) so that |\|g. < D for
i =1,2. Thus, |g|¢. < 2D, which depends only on r and the number of vertices of T

Suppose I' does not split as a join, and define py = e and p; = Ay -+ \; for i € {1,...,m}.
Note that the p; are the vertices of the C(I")—geodesic connecting e and g with edges labelled
by the \;. By Lemma 4.1.5, we can assume that suffixy,(p;—1) = e for each i € {2,...,m}
and that there exists an S(I')—geodesic connecting e to g that contains each p; as a vertex.
Fixie {1,...m}, he (\;), and Q < A,.

As stated above, we wish to show dnq(e, A;) is bounded uniformly in terms of r so that
we can apply the induction hypothesis. Since duq(e, \;) is independent of the choice of
representative of the coset h({2), we can assume suffixg(h) = e. To achieve the bound on

dral(e, i), we use the following two claims plus the assumption that dnq(e, g) < 7.

Claim 4.2.8. 7, na(pi—1) = m,_,nale).

Proof. By equivariance of the gate map and the prefix description of the gate map (Lemma

2.6.24),

gpiflhﬁ(pi—l) = pi—lh : preﬁXQ(h_l) and gpi71h9<€) = pi—lh preﬁXQ(h_lpi:ll)'

Since prefix, (p;';) = e, we have prefix,(p;}) = € too. Since h € (A;) and prefixg(p;, ;) =
e, we have prefixg(h~!p; ') = prefixg(h™) and so g, ,no(Pi—1) = @p,_,na(e). This implies

7Tp¢71h9<pi71> = 7Tp¢71h9<€)' O
Claim 4.2.9. d,, ,no(pi,g) <.

Proof of Claim 4.2.9. Recall, we can write each A; in reduced syllable form to produce an
S(I")—geodesic connecting e and g and containing each p; as a vertex (Lemma 4.1.5). Thus,

Lemma 4.1.13 says d,, ,na(pi,9) < dp, na(e, g), and d,,, nale, g) < r by assumption. O
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By the equivariance of the gate map (Proposition 2.6.22(2)), dpa(e, Ai) = dp, o (pi—1, Di)-

Claim 4.2.8 then implies

dp, sha(Pic1,pi) = dp, i nale,pi) < dp, nale,g) +dp, nalg, pi).

Since dp,_,na(e,g) < r by assumption and d,,_,no(g,p;) < r by Claim 4.2.9, we have
drale, Ni) = dp, na(piz1,pi) < 2r for each h € (A;) and Q© < A;. The induction hypoth-
esis now implies there exists D = D(n,r) such that the word length of \; in (A;) is at most
D. Since each graphical subgroup is convexly embedded in the word metric d on Gr, this

implies |g|c. < rD, which depends only on r and the number of vertices of I'. ]
The uniqueness axiom allows us to classify boundedness of the hyperbolic spaces C'(gA).

Theorem 4.2.10. For any g € Gr and any subgraph A of I' containing at least two vertices,

the space C(g\) has infinite diameter if and only if A does not split as a join.

Proof. Recall, if A splits as a join, then diam(C'(gA)) < 2 by Remark 4.1.7. Suppose therefore
that A does not split as a join and let vy, ..., v be the vertices of A. For each i€ {1,...,k},
pick s; € S,,, where S,, is the finite generating set for GG,, that we fixed at the beginning of
Section 4.1. Define A = s1...s;. Foreach i€ {1,...,k} and j € {1,...,n}, let s be the jth
copy of s; in the product (s ...s;)" = A", that is, \" = (s1...5:)(s?...52)...(s7...s0).
We claim that for each n € N, (s]...s})(s3...57)...(s7...s%) is a reduced syllable
expression for \". Indeed, if (si...s})(s?...57)...(s7...s}) is not reduced, then there
exists sg that is combined with some s¢ (j # ¢) after applying some number of commutation
relations. However, if s{ were to be combined with s{ , then s; would need to commute
with each of s1,...,8,_1,8i41,...,8;. This only happens if the vertex v; is connected to
every other vertex of A, but this does not happen as A does not split as a join. Therefore
(s7...81)(sT...8%)...(sT...s}) is areduced syllable expression for A", and we have |\" |5, =

kn for all n € N.
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To prove C'(A) has infinite diameter, we use the following claim plus the uniqueness axiom

to show that da(e, A\") can be made as large as desired by increasing n.
Claim 4.2.11. For all Q € A, h e (A) and n > 2, dpa(e, A") < 3.

For now we accept Claim 4.2.11, deferring its proof until after we have proved C'(A) has
infinite diameter.

For the purposes of contradiction, assume there exists R > 0 such that dy(e, \") < R
for all n € N. By Claim 4.2.11, for every proper subgraph Q@ < A and h € (A), we have
dra(e, \") < 3. Applying the uniqueness axiom (Lemma 4.2.7) to the graph product (A) =
G, this implies there exists D = D(R,|V(A)|) > 0 such that |\"|g, = |\"|g. < D for all
n € N. However, this is a contradiction as |\"|g. = |\"|s,, = kn for all n € N. Thus, for each
R > 0, there exists ng such that da(e, \"®) > R. Therefore C'(A), and hence C(gA), has

infinite diameter. O

Proof of Claim 4.2.11. Let Q < A be a proper subgraph and h € (A). Since dpn(e, A™) does
not depend on the choice of representative of the coset h({2), we can assume suffixq(h) = e,
and thus prefixg(h™!) = e.

Recall, mpo(e) = h - prefixg(h™!) and mpq(\") = h - prefixg(h™'A") (Remark 4.1.10).
Since prefixg(h™!) = e, it suffices to prove that do(e, h™*A") < 3. We can also assume that
prefixg (h™1A") # e.

By Proposition 4.1.11, all syllables of prefix,, (h~'A™) are syllables of \". As prefixg(h™'A\") #
e, there must exist i € {1,...,k} and j € {1,...,n} such that sf is the first syllable of
(s1...51)(s2...52)...(s...s%) that is also a syllable of prefixg(h™tA").

Let ¢,m € {1,...,k} be such that v, € A \st(Q) and v, €  is not joined to v, by an
edge. These vertices exist since A does not split as a join and thus A # st(€2). We will show
that prefixg(h~'A\") can be written as a product pipsps where supp(ps) is a single vertex
v of  and supp(p1),supp(ps) S Q@ ~ v. This implies the C(Q2)—distance between e and

prefixg (h~1A\") is at most 3, which in turn says dyq(e, A\") < 3.
113



Suppose i < f. Since v, ¢ €, every syllable of prefixg(h~*A\") must either be one of

s!,sl,1,...,5)_4 or must commute with s7. As s, does not commute with s, it follows

J

m

that no s/, is a syllable of prefixg(h™'A") for J > j. Therefore prefix,(h~'A") can contain
at most one syllable with support v,,, namely s/ . Thus prefixq(h™'A\") = pipap3 with
supp(p1) € Q N U, supp(p2) € v, and supp(ps) € Q N v,. Note, if Q@ = v,,, then
prefixg (h™IA") = py = s/, and dpq(e, \") = dg(e, s?.) = 1 because s/, € S,

m *

The case i > { proceeds similarly because every syllable of prefixq,(h~'A™) must either be

o o - i
one of 87,80, ,,...,8.,8 ", ..., s or must commute with s)*". O

In Section 4.3, we use our characterisation of when C'(gA) has infinite diameter to answer

two questions of Genevois [Genl19b| (Theorems 4.3.10 and 4.3.12).

4.2.4 Bounded geodesic image and large links

As the bounded geodesic image axiom is used to prove large links, we include both in this

section.

Lemma 4.2.12 (Bounded geodesic image). Let x,y € Gr and [hQ2] & [gA]. For any choice
of representatives h§) € [hY] and gA € [gA], if dpo(z,y) > 0, then every C(gA)-geodesic v

from map () to mea(y) intersects the closed 2-neighbourhood of ply.

Proof. We first need to establish that when [hQ] £ [gA], gating onto h(2) is the same as

first gating onto g(A) and then gating onto h{€2). This will allow us to relate my(x) and
’/ThQ(IL’).
Claim 4.2.13. If [hQ] = [gA], then gnra(gea(z)) = gna(x) for all z € Gr and for all

representatives gA € [gA] and hQ € [h€].

Proof. Let k € Gr so that [kQ2] = [h€2] and [kA] = [gA]. Without loss of generality, we can

assume x ¢ g(A).
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Figure 4.9: The S(I")-geodesic n connecting by € h{{2) and ag € o; when dpq(z,y) > 0.

Suppose gna(gga(x)) # gra(z). Then there is a hyperplane H separating gna(gga(z))
and gpo(z). By Proposition 2.6.22, H also separates gya(z) and = and cannot cross g{A).
However, we know that H crosses h{{2) < h(A) and by parallelism (Proposition 4.1.2) H
must also cross k(Q2) < k(A). But kA || gA, so H must also cross g(A). This contradiction

means we must have gna(gga(z)) = gra(x). O

Let v be a C'(gA)-geodesic from myp () to mya(y) and let py, ..., p, € (A) so that my(x) =
gp1, gpa, - - -, gpn = Tya(y) are the vertices of v. Let a; be an S(gA)-geodesic from gp; to
gpis1 for each i€ {1,...,n —1}. Let 4/ be the path in S(gA) that is the union of all the ;.

Suppose dpo(z,y) > 0. Then dsyu(gna(z), gra(y)) > 0 and so there is a hyperplane
H separating gna(x) = gna(gea(z)) and gra(y) = gna(gea(y)) that is labelled by a vertex
w € V(Q). The hyperplane H then also separates gya(x) and gya(y) by Proposition 2.6.22.
Thus, H must cross one of the segments «; that make up 4. Since H crosses both h{{2)
and «; and H cannot separate gga(z) from gpo(z) nor gya(y) from gua(y), there exists an
S(I")—geodesic, n, from an element by € h({{) to ag € o; that is labelled by vertices in lk(w);

see Figure 4.9.
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Let a1 = mya(ao) and by = myp(bo). Since n was labelled by vertices in lk(w), Proposition
4.1.11 tells us we have supp(a; *b;) < lk(w) A, which is a proper subgraph of A. Thus, in the
subgraph metric, dgx(ay, piy) < 1as a1 € mga () and by € mga (W) < phi. As «; is labelled
by a proper subgraph of A, any subsegment is also labelled by a proper subgraph, hence
dga(ga, gpis1) < 1 for any vertex ga of ;. Thus, dga(ga,vy) <1 and therefore dgA(’y,p}g’X) <

2. O

We can now use the bounded geodesic image axiom together with the following lemma

to prove large links.

Lemma 4.2.14. Let [gA], [h2] € &r. For any representatives g\ € [gA] and hQ) € [hQ)], if
diam(myp (h(§2))) > 2, then [gA] & [hQ].

Proof. If [gA]h[h2] or [h2] = [gA], then mgp (R(Q)) < pl¥ , which is shown to have diameter
at most 2 in Lemmas 4.1.18 and 4.1.22. If [gA] L [hQ], then A < 1k(2). Let w € (). Then
gor(hw) = g - prefix, (g7 hw). Assume without loss of generality that suffixy(g) = e and
suffixo(h) = e. By Proposition 4.1.11, all syllables of prefix, (¢ 'hw) are syllables of hw.
Further, since A < 1k(f2), we have supp(w) n A = ¢J. As suffixq(h) = e, this implies
prefix, (g 'hw) = prefix, (¢7h). Thus mya(hw) = g - prefix, (¢g~'h) for all w € (), and so
man(R{€2)) has diameter 0. O

Lemma 4.2.15 (Large links). Let x,y € Gr and n = dy(z,y) where k € Gr and Il < T'.
There exist [h1Q4], ..., [hS2] € Sr each nested into [kII] so that for any [gA] € Sr with
[gA] = [EIT], if dga(z,y) > 18 for some representative of [gA], then [gA] = [hi€] for some

ie{l,...,n}.

Proof. Let v be a C(kIl)-geodesic connecting mgr(x) and mer(y), let men(x) = po,p1, -+ s o0 =
mu(y) be the vertices of 7, and let \; = p;',p; for each i € {1,...,n}. Forie {1,... n},

define T; to be p;_1 - (supp(\;)). Note that p; € T,_1 n T}, and T; < k(II) since p;_1 € k{II)
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and supp(\;) < II. In particular, [T;] = [kII]. Note also that 7 (7;) = T; is contained in
the closed 1-neighbourhood of p; in C'(kII), because supp(J;) is a proper subgraph of II.
Next, let [gA] € &p with [gA] & [kII] and suppose dga(z,y) > 18 for some representative
g/ € [gA]. We shall show [gA] = [T;] for some i € {1,...,n}. Since we have established the
bounded geodesic image axiom (Lemma 4.2.12), we have v N NQ(ﬂZ/I}[) # . Let j be the first
number in {0,...,n} so that p; € Ny(p’n), and recall that each muy(T;) = T} is contained
in Ny (p;) and diam(p?y) < 2 (Lemma 4.1.18). Therefore, if 1 < i < j or i > j + 10, then
e (T5) 0 Ng(pzﬁ) = ¢ and the bounded geodesic image axiom says 7,5 (1;) is a single point.
Since T; 1 nT; # & for i € {2,...,n} and z € T}, y € T,,, we have
J n
oA (U Tz) = g (x) and moa ( U Tz) = g (Y)
i=1 i=j+10
whenever 7 > 0 and j + 9 < n respectively. This implies
min{n,j+9}
dga(z,y) < 2 diam (g (T3)).

i=j+1

Since dgy (z,y) > 18, there exists jo € {j +1,..., min{n, j + 9}} so that diam (mys(T},)) >
2. By Lemma 4.2.14, this implies [gA] = [T}, ] O

4.2.5 Partial realisation

We now prove partial realisation, which roughly says that given a collection of pairwise
orthogonal [g;A;] € Gr, the hyperbolic spaces C(g;A;) give a coordinate system for Gr.

We first prove that we can always represent n mutually orthogonal elements of G by the
same group element, and similarly for nesting chains. This allows us to simplify arguments

involving three or more orthogonal domains by working within a fixed coset.

Proposition 4.2.16. Let [g1A4],...,[g\n] € Sr. If either [(1A] & ... E [g An] or
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[g1A1], ..., [gn\n] are pairwise orthogonal, then there exists g € Gr so that [g\;] = [g:\s]
forallie{l,...,n}.

Proof. We proceed by induction. The initial case n = 2 is true by definition. Suppose the
statement is true for all n < m, and consider n = m, that is, we have [g1A4], ..., [gmAn] € ©r
which are either pairwise orthogonal or nested. Then in particular [¢1A4], ..., [gm_1Am_1] are
pairwise orthogonal (respectively nested), hence there exists g € Gr such that [gA;] = [¢;As]
for all ¢ < m. Since [gA;] = [¢:A;] if and only if [A;] = [¢7'¢g:A;], we can assume g = ¢
without loss of generality. Then [A;]L[gmAnm] (respectively [A;] E [gmAn]) for each i < m,
so for each i < m there exists k; such that k; € {(st(A;)) and g 'k; € (st(A,,)). Let h
be the shortest prefix of g, such that g 'h € {(st(A,,)). Since g 'k; € (st(A,,)) for each
ie{l,...,m—1}, we know supp(h) < supp(k;) < st(A;) for each i < m. Hence [A;] = [hA;]

for each i < m and [¢,,A,,] = [AA,,]. Thus, by induction the statement is true for all n. [

Lemma 4.2.17 (Partial realisation). Let {[g;\;]}!, be a finite collection of pairwise orthog-
onal elements of &r. For each i € {1,...,n}, fir a choice of representative g;\; for [g;\;]

and let p; € C(g;\;). There exists x € Gr so that:
¢ dgi/\i (Iapz) =0 fOT all i

e for each i and each [hQY] € Gr, if [g:\;] = [RQ] or [hQ]M[g:\;], then for any choice of

representative hS2 € [hQ] we have dpg(z, pla*) = 0.

Proof. By Proposition 4.2.16 there exists some g € Gr such that [¢g;A;] = [gA;] for all i.
Define p} = gga,(pi) = g\i, where \; € (A;), and let * = gAAa...\,. Then my,(z) =
g - prefixy (97 ') = g\ = g, (ps) for each i, since orthogonality tells us the elements \; all
commute with each other and the subgraphs A; are all disjoint. Therefore dga, (z, p;) = 0 for
all 7, and so by Lemma 4.1.8, we have dg,,(z,p;) = 0 for all 4.

Now, suppose [gA;] = [hQ2] or [gA;]hm[AS2] for some i € {1,...,n} and [hQ)] € Gr.

Since A; < lk(A;) < st(A;) for each j # ¢, we have x = g\;...\, € g(st(A;)). Thus,
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Tha(x) € mha (glst(A;))) = pia for any choice of representative h§2 of [A2]. Moreover, we

have pfl?{ = UkAi”gAi ThQ (k<Al>) = p%\i, since g;A; || gA;. This implies dpq(z, pié\) =0. O

4.2.6 Consistency

Finally, we prove consistency, which says that given two transverse domains [gA] and [h€2]
in &r, each element of Gr projects uniformly close to one of the lateral relative projections
pho, and ple.

Our proof shall proceed by contradiction. Assuming that each element of Gr projects
far from both lateral projections, we can use Lemma 4.2.14 to show that [gA] = [hlk(w)]
for each vertex w of €, which will imply [gA]L[hw] for each vertex w of Q. We then
obtain [gA] L[h€2] by adapting the proof of Proposition 4.2.16 to show that we may promote
orthogonality with multiple domains to orthogonality with their union. This contradicts
[gA]A[RS2].

Lemma 4.2.18. Let [g\],...,[gAn1], [EAL] € Sr. If [gA;] L[kA,] for all i < n, then
[9Uicn il LIEAR].

Proof. Since [gA\;]L[kA,] if and only if [A;]L[g 'kA,], we may assume that ¢ = e. By
orthogonality, for each i < n there exists k; such that k; € (st(A;)) and k~1k; € (st(A,)).
Following the proof of Proposition 4.2.16, let h be the shortest prefix of k such that k7'h €
{st(Ay,)). Then supp(h) < supp(k;) < st(A;) for all i < n, so h € (st(A;)) for all i < n.

Therefore h € <mz<n St(AZ)> < <St(Uz<n Al)>7 hence [Uz<n Al] = [h Ui<n Al] and [kAn] =
[hA,]. Moreover, by orthogonality, A, < lk(A;) for all i < n, hence A, < [),_, k(A;) =

Ik(UJ,_,, Ai). We therefore have [| J,_,, Ai] L[kA,]. O
Lemma 4.2.19 (Consistency). If [gA]h[hQ], then for all x € Gr and for any choice of
representatives gA € [gA] and hQ) € [h2] we have

min {dua (e (), p5 ) don (7on (), A1) | < 2 (+)
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Further, if [KII] = [gA] and either [gA] = [hQ] or [gA]M[h2] and [h2] £ [KII], then

th(ﬂiS?/)z/(\Z) = 0.

Proof. We prove () by contradiction. Suppose dyo(mha(2), pley) > 2 and dga (7 (), pr) >

2. Then we also have

dsyi(9n0(2), ra(9(A))) > 2 and dsyi(ggn (), ga (AS))) > 2.

Thus gro(x) and gna(g{A)) are separated by some hyperplane H, labelled by a vertex w
of Q. By Proposition 2.6.22(5), H, also separates = and g{A). In particular, H, crosses
any S(I")—geodesic segment v connecting x and g{A). Because of Proposition 2.6.22(4), H,,
cannot separate g{A) and gna(g(A)) as H,, crosses h{{2). Thus, there exists a combinatorial
hyperplane of H,, contained in the same component of S(I')\ H,, as both g{A) and gna(g{A)).

Let H!, be this particular combinatorial hyperplane of H,; see Figure 4.10.

9 (A{E2)) gna(g(A))

Figure 4.10: The combinatorial hyperplane H, of H, that is in the same component of
S(I") \ H, as both g{A) and gpa(g(A)).

We claim that diam(mg(H,,)) > 2. By construction, H/, contains both a vertex of h{{2)
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and a vertex of 7. Thus, m,(H],) contains points from both 7wy (h{§2)) and mya(7y). Since

gga(2) is the unique point in g{A) that minimises the S(I')-distance from z to g(A), we have
80(1) = Goa(2) € mn(HL). Since dyn (mya (), T (AGSH))) = dgn(Toa(2), p1) > 2, and
maa(H,,) must contain points from both mya (z) and my (h(£2)), we must have diam(7ga (H.,)) >
2.

By Remark 2.6.19, we have H/ < h{lk(w)). Thus, diam(m,(H,)) > 2 implies that
diam(mga (h{lk(w)))) > 2. Lemma 4.2.14 then forces [gA] = [hlk(w)] = [hst(w)]. This
implies A < lk(w) and that there exists k € Gr such that [kA] = [gA] and [kst(w)] =
[Ast(w)]. Since st(st(w)) = st(w), [kst(w)] = [hst(w)] implies [kw] = [hw]. Thus [gA] =
[kA] L [kw] = [hw]. Moreover, since dua(mho(z), pln) > 2, every vertex of  must appear
as an edge label for the S(h(2)-geodesic connecting gro(x) and gna(g{A)). Therefore such a
hyperplane H,, exists for every vertex w of €, and so [gA] L [hw] for all w e V(Q2). Lemma
4.2.18 then tells us [gA] L [hS2], contradicting transversality. Hence inequality () must
hold.

Now suppose [KII] = [gA] and either [gA] = [hS2] or [gA]M[AQ] and [RQ]L[KII]. Then
there exists some element a such that [kI1] = [all],[gA] = [aA]. Therefore m,q(a(Il)) < pkl

and 7m0 (alAY) € pl%. But adlly < a(A), so du(pfR, pf5) = 0. O

4.2.7 Compatibility of the group structure

The results so far show that a graph product Gr can be given the structure of a relatively
hierarchically hyperbolic space. It remains to show that this structure agrees with the group

structure of Gr.

Lemma 4.2.20. The map ¢ : Gr x & — Sr where ¢(a, [gA]) = [agA] defines a =—, L-,
and h-preserving action of Gr on Sr by bijections such that Sr contains finitely many

Gr—orbits.

Proof. Let ¢, = ¢(a,-). This is well-defined, since [gA] = [kA] if and only if [agA] = [akA].
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Further, since ¢, does not alter the subgraph A, it preserves the orthogonality, nesting, and
transversality relations. Each ¢, is also a bijection: if [agA] = [ah€], then A = © and
(ag)~(ah) = g~ 'h € (st(A)), hence [gA] = [hQ], proving injectivity. Surjectivity holds since
we can always write [gA] = ¢ ([a"*gA]). Finally, there are finitely many Gr—orbits; one for

each subgraph A < T'. n

Lemma 4.2.21. For each subgraph A < ' and elements a, g € Gr, there exists an isometry
agn: C(gA) — C(agA) satisfying the following for all subgraphs A, < T' and elements
a,b,g,h e Gr.

e The map (ab)yn: C(gA) — C(abgA) is equal to the map apgp 0bya: C(gA) — C(abgA).
o For each x € G, we have agy(mgn(2)) = Taga(az).
o If[RQh[gA] or [hQ] = [gA], then ag(p)y) = pihg.

Proof. Let the isometry ag,n be left-multiplication by a, that is for any gz € C(gA), let

agn(gr) = agxr. Then:
e The equality (ab)ga = apga © bya is immediate from our definition.
e We have agp(mga(x)) = maga(ax) by Proposition 2.6.22(2).

e The final property follows as an immediate consequence of the previous one and the

definition of the relative projections. O]

4.2.8 Graph products are relative HHGs

We now compile the results from Section 4.2 to obtain the main result of this chapter, that

any graph product of finitely generated groups is a relative HHG.

Theorem 4.2.22. Let Gr be a graph product of finitely generated groups. The proto-
hierarchy structure Sr from Theorem 4.1.23 is a relatively hierarchically hyperbolic group

structure for Gr with hierarchy constant max{18, |V (I")|}.
122



Proof. Let &r be the proto-hierarchy structure for (Gr,d) from Theorem 4.1.23. The work

of this section has shown that &r is a relative HHS structure for (Gr,d).

(1) We proved that the spaces associated to the non-E-minimal domains of Gr are %f

hyperbolic in Lemma 4.2.1.
(2) We proved finite complexity in Lemma 4.2.5.
(3) We proved the container axiom in Lemma 4.2.6.

(4) The proof of the uniqueness axiom follows from Lemma 4.2.7, since if de(gap) (2, y) is
uniformly bounded for all [gA] € Gp, then Lemma 4.1.8 implies that dga(z, y) has the

same uniform bound for all g € Gr and A = T".
(5) We proved the bounded geodesic image axiom in Lemma 4.2.12.
(6) We proved the large links axiom in Lemma 4.2.15.
(7) We proved the consistency axiom in Lemma 4.2.19.

(8) We proved the partial realisation axiom in Lemma 4.2.17.

We now verify the remaining axioms required for (Gr,d) to be a relative HHG, as laid
out in Definition 2.7.3.

Let ¢ : Gr x & — Gr be the map ¢(a, [gA]) = [agA]. By Lemma 4.2.20, this is a well-
defined Gr—action by bijections that preserves the nesting, orthogonality, and transversality
relations and has finitely many orbits. We will use a - [gA] to denote ¢(a, [gA]) = [agA].

For each [gA] € Gr, let gA denote the fixed representative of [gA] such that C([gA]) =
C(gA\); see the proto-hierarchy structure in Theorem 4.1.23. Left multiplication by a € Gr
gives an isometry agy: C(gA) — C(agA) for each g € Gr and each subgraph A < I'. For

each a € Gp and [gA] € Gr, define apgay: C(gA) — C(agA) by agga; = gaga © aga.
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Let a,b € Gr and [gA], [h2] € Gpr. We now verify the remaining axioms of a relatively

hierarchically hyperbolic group (Definition 2.7.3).

o Let A € (A). To show (ab)ga] = apga) © bpga; we will show

(ab)ga1(GA) = (appga) © brgag) (GA)-

Using the last clause of Lemma 4.1.8, we have

(ab) (g1 (GA) = Gagga (abgA) = abg - pap

where p,, = prefix, ((abg)~! - abg). Similarly, we have

(pga] © brga)) (GN) = appga) (bg - puA) = abg - papp)

where p, = preﬁXA((@)*1 . bg) and p, = preﬁXA((a_bg)*1 -a@). Thus, it suffices to
Prove pPaPp = Pab-

Since bg and bg are both representatives of the parallelism class [bgA], we have (bg)~" -

bg € (st(A)). Therefore (bg)~™" - bg = pyl, where [, € (1k(A)). Similarly, (abg)~' - abg =

Pala where [, € (Ik(A)). Hence the following calculation concludes our argument:

(abg)~" - abg =(abg)~" - abg - pyls
prefix, ((@)’1 . ab§) = prefix, ((@)’1 - abg - pblb)
Pap = prefix, (palapblb)

Pab =PaDb-

e Let x € Gr. Since agA || agA, we can use Lemma 4.1.8 and equivariance of the gate
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map (Proposition 2.6.22(2)) to conclude:

gagh (Gaga (a)) =gaga (ax)

gaga (@ - gga(2)) =0aga(az)

(gaga © aga) ((mga(¥)) =Taga(ax)
aggn (T(ga) (7)) =Tlaga)(a).

e Suppose [AQ2]h[gA] or [hQ] = [gA]. Lemmas 4.1.8, 4.2.20, and 4.2.21 imply afy) (,0%2%) =

[ah€)]
PlagA]

a[gA] (p%iﬂ) = (Gaga © agn) (,0?5\2) (Definition of apgaj)
—Gagn (pggg)) (Lemma 4.2.21)
=0aga (8aga (ah(st(2)))) (Definition of p)
=gaga (ah(st(2))) (Lemma 4.1.8)
=gaga (ah(st())) (ah$2 || ahs2)
— P, O

Behrstock, Hagen, and Sisto show that any relatively hierarchically hyperbolic space has
a distance formula, which expresses distances in the space as a sum of distances in the
projections [BHS19, Theorem 6.10]. As a result, we now have such a distance formula for

graph products of finitely generated groups.

Corollary 4.2.23 (Distance formula for graph products). Let Gr be a graph product of

finitely generated groups. There exists oy > 0 such that for all o = ¢ there exist K = 1 and
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L = 0 such that for all g, h € Gr

% Z {{d[kA]<97 h)}}g —L< d(g7 h) <K Z {{d[kA](g> h)}}g + L

[kA]GGF [kA]GGF
where we define {N}_ =N if N >0 and 0 if N < 0.

Another key consequence of relative hierarchical hyperbolicity for a group is that the
action of the group on the E-maximal space is acylindrical. Thus, we have that the action

of Gr on C(T") is acylindrical.

Corollary 4.2.24 (The action on C(I') is acylindrical). Let Gr be a graph product of finitely

generated groups. The action of Gr on C(I') by left multiplication is acylindrical.

Proof. Behrstock, Hagen, and Sisto proved that if (G, &) is a (non-relative) hierarchically
hyperbolic group and 7' € & is the E—maximal element, then the action of G on C(T) is
acylindrical [BHS17b, Theorem 14.3]. However, the argument they employ only uses the
hyperbolicity of the space C(T') and not the hyperbolicity of any of the other spaces in the
HHG structure. Thus, their argument carries through verbatim if (G, &) is a relative HHG
provided & # {T'}. In the case when & = {T'}, then C(T) is equivariantly quasi-isometric
to a Cayley graph of G with respect to some finite generating set. Thus, G acts on C(T)
properly, and hence acylindrically. Applying this to the graph product Gr with relative HHG

structure &r, we have that Gr acts on C(I') acylindrically. O]

4.2.9 The syllable metric is an HHS

Since nearly every argument used in the proof of Theorem 4.2.22 factors through the syllable
metric on the graph product G, the same arguments show that the syllable metric on Gr is
itself a hierarchically hyperbolic space. This proves Corollary B stated in the introduction
and answers a question of Behrstock, Hagen, and Sisto about the syllable metric on a right-

angled Artin group. Note that since we are not working with a word metric on Gr in this
126



situation, we do not require the vertex groups to be finitely generated. As the only use of
the finite generation of the vertex groups in Theorem 4.2.22 is to ensure that G has a word

metric, this does not create any additional difficulty.

Corollary 4.2.25. Let I' be a finite simplicial graph, with each vertex v labelled by a non-
trivial group G,. Then the graph product Gy endowed with the syllable metric is a hierarchi-

cally hyperbolic space.

Proof. Define the proto-hierarchy structure for Gr as before, except whenever v € V(I') and
g € Gr, define C(gv) to be the graph whose vertices are elements of gG, and where every
pair of vertices is joined by an edge (that is, we endow ¢G, with the syllable metric rather
than the word metric). The proofs of the HHG axioms then follow as before, with any
instance of ‘word metric’ replaced with ‘syllable metric’, and with trivial E—minimal case

for the majority of axioms due to such C(gv) having diameter 1. O

4.3 Some applications of hierarchical hyperbolicity

We now give some applications of the relative hierarchical hyperbolicity of graph products.
Our main result of this section is Theorem 4.3.1, which uses our results from Chapter 3
to show that if the vertex groups of a graph product Gr are HHGs, then Gr is itself a
(non-relative) HHG.

We then give a new proof of a theorem of Meier, classifying when a graph product Gr with
hyperbolic vertex groups is itself hyperbolic. We do this using the relative HHS structure
that we just obtained, noting that when the vertex groups are hyperbolic, this is in fact a
(non-relative) HHS structure.

Finally, we answer two questions of Genevois regarding the electrification E(T) of a
graph product Gr of finite groups [Genl9b, Questions 8.3, 8.4]. The similarity of Genevois’
definition of E(I') to our own subgraph metric C(I") allows us to leverage properties of C(I)
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to prove statements about E(T"). In particular, we use T" to classify when E(T") has bounded
diameter (Theorem 4.3.10) and when it is a quasi-line (Theorem 4.3.12). As Genevois proved
that any quasi-isometry between graph products of finite groups induces a quasi-isometry
between their electrifications [Gen19b, Proposition 1.4], these two theorems provide us with

tools for studying quasi-isometric rigidity of graph products of finite groups.

4.3.1 Graph products of HHGs

Theorem 4.3.1. Let Gr be a graph product of finitely generated groups. If for eachv e V(I'),

the vertex group G, is a hierarchically hyperbolic group, then Gr is a hierarchically hyperbolic

group.

Proof. For each v € V(I'), let R, be the HHG structure for &G, and let Sr be the relative
HHG structure for Gr coming from Theorem 4.2.22. Fix Ey > 0 to be the maximum of
the hierarchy constants for Gr and for each QRyp,). For each [gA] € &r, let gA be the fixed
representative of [gA] so that C([gA]) = C(gA). If [gA] = [A], then we choose § = e.

Let & = {[gA] € &r : A is a single vertex of I'}. If A is a single vertex v of ', then
C([v]) is the Cayley graph of the vertex group G, with respect to a finite generating set.
Thus, Ry, is an HHG structure for C([v]). For each [gv] € &', Ry, is also an Ey-HHS
structure for C'([gv]), since C([gv]) is isometric to C([v]). Let R4y denote the HHS structure
for C'([gv]) induced by Rp,. If U € Ry, then we will denote the corresponding element of
Riys) by gU where g is the chosen fixed representative of [gv]. Let R = U golesmin Rigol;
then let Tp = (&p \ &) U R.

We shall use Eg, Lg, and g to denote the nesting, orthogonality, and transversality
relations between elements of Gr, and Ex, Lk, and Mg to denote the relations between
elements of a fixed Ry

The bulk of our proof of Theorem 4.3.1 does not use the specifics of the relative HHG

structure Gr and instead relies on more general relative HHS properties. Thus, to simplify
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notation, we will use the capital letters V or V' to denote elements of G and use Ry or
MRy to denote the corresponding HHS structure on C(V) or C(V'). That is, if V' = [gv] for
a vertex v € V(I'), then Ry = Ry,). We will use the capital letters U, W, and @ to denote
elements of Ty. For U, W € &p \ &% or U, W € Ry we shall denote the relative projection
from U to W in &p or Ry as pll,. We shall use 7y to denote the projection G — 26W) if
W e &r and 7} to denote the projection C(V) — 2°MW) if W e Ry,

Our proof of Theorem 4.3.1 proceeds via four claims. First we prove that the structure
Sr can be combined with all of the Py structures in a natural way to produce a proto-
hierarchy structure for Gr with index set ¥, (Claim 4.3.2). This proto-hierarchy structure
is not quite a hierarchically hyperbolic space structure, as it satisfies every axiom except
the container axiom (Claim 4.3.3). However, we show that this proto-hierarchy structure
has the property that any set of pairwise orthogonal elements of ¥, has uniformly bounded
cardinality (Claim 4.3.4). This allows us to use the results of Chapter 3 to upgrade ¥, to a
genuine HHS structure T. Since the proto-structure will satisfy the equivariance properties
of a hierarchically hyperbolic group structure for Gr (Claim 4.3.5), this HHS structure will

also be a hierarchically hyperbolic group structure.

Claim 4.3.2. Gr admits an Ej;—proto-hierarchy structure with index set Ty, where E; =

E} + E.

Proof. For U € %, the associated hyperbolic space C'(U) will be the same as the space
associated to U in either & or fR.

Projections: For all W e T, the projection map will be denoted 1y : Gp — 260",
IfW e &r G{f”;", then Yy = 7wy and if W € Ry, then ¢y = WI‘,/V omy. Each ¢y is
(E2, E2 + Fy)—coarsely Lipschitz.

Nesting: Let W, U € T;. We define U = W if one of the following holds:

o W,UeGr~\GFmand U cg W;

129



e W.UefRy and U =4 W,
o WeGSr\ G and U € Ry with V £g W.

This definition makes [I'], the Tg-maximal element of &, also the =-maximal element
of . For U,W € %y with U & W we denote the relative projection from U to W by SY,

and define it as follows.

o If W,U € &\ G and U ¢ W or W,U € Ry and U =x W, then 85, is pf,, the

relative projection from U to W in Gr or Ry respectively.

o If We S\ &P and U e Ry with V =g W, then BY, is pyy,the relative projection

from V to W in Gr.

The diameter of 35, is bounded by Fj in all cases as it is always coincides with a relative
projection (pY, or pj;;) from an existing hierarchy structure with constant Fj.

Orthogonality: Let W, U € T,. We define U L W if one of the following holds:

W,U e &Sp & and U Lg W;

W,U e Ry and U Ly W;

o WeGSr\G" and U € Ry with V Lg W;

W e Ry and U € Ry where V 1Lg V',

Transversality: Let U, W € ;. We define UhW whenever they are not orthogonal or
nested in Ty. This arises in three different situations, which determine the definition of the

relative projections 8)Y and SY,.

e Either U, W € &r or U,W € Ry and UhgW or UhgW respectively. In this case, 35,

is pY,, the relative projection from U to W in & or Ry respectively, and 7 is py .
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o W e Gr and U € Ry where WhgV. In this case, 35, is ply, the relative projection

from V to W in &y, and 8/ = m}; (p\) ).
o W e Ry and U € Ry where VgV, In this case, B4, = 7}y (pV,) and B = 77 (pV).

The projection and transversality axioms of PRy and Sr ensure that 8, has diameter at

most E2 + Fjy in all cases. O

Claim 4.3.3. T satisfies all of the axioms of a hierarchically hyperbolic space except for

the container axiom.

Proof. Recall, Fy > 0 is the hierarchy constant from the proto-hierarchy structure ¥,. Note
E is larger than Ejy, which in turn is larger than the hierarchy constants for Gr and each
Ry.

Hyperbolicity: For all W € T, the space C'(W) is E;—-hyperbolic.

Uniqueness: Let > 0 and 6: [0,00) — [0,00) be the maximum of the uniqueness
functions for Sr and each Ry. If z,y € Gr and d(z,y) > 0(0(k) + k), then there exists
W € &r such that dy (z,y) = (k) + k by the uniqueness axiom in (Gr, &r). If W ¢ &P,
then W is in Ty and the uniqueness axiom is satisfied. If W € G then the uniqueness
axiom in (C' (W), Ry ) provides U € Ry so that dy(z,y) = k. The uniqueness function for
(Gr, %) is therefore ¢(k) = 0(0(k) + k).

Finite complexity: The length of a E—chain in ¥ is at most 2F.

Bounded geodesic image: Let z,y € Gr and U W € Ty with U = W. If U, W € & or
U, W € Ry, then the bounded geodesic image axiom from (Gr,Sr) or (C(V),MRy) implies
the bounded geodesic image axiom for (Gr,%,). Suppose, therefore, that U € Ry and
W e &r \ 6", By definition, V =g W and 35, coincides with p}j,, the relative projection

of V to Win &r. If dy(z,y) > E? + Ey, then we have

Ef + By < dy(z,y) = dy(my (zv (2)), 7 (7v (1)) < Erdy (7v(2), 7 (y)) + Ei,
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which implies £y < dy(my (), 7v(y)). Now, the bounded geodesic image axiom in (Gr, Gr)
says every geodesic in C(W) from ¢y (z) = mw(z) to Yw(y) = mw(y) must pass through
the E;-neighbourhood of pj;; = B%,. Thus, the bounded geodesic image axiom is satisfied
for (Gr, To).

Large links: Let W € %y and z,y € Gpr. If W € Ry for some V € &7 then all
elements of ¥y that are nested into W are also elements of $Ry,. Thus, the large links axiom
in (C(V),Ry) immediately implies the large links axiom for (Gr, Tp).

Assume W € &p \ &%, The large links axiom for (Gr,Sr) gives a collection £ =
{Ur,...,Upn} of elements of Sr nested into W such that m is at most Eydy (mw (z), 7w (y)) +
E,, and for all V € &y, either V Eg U; for some ¢ or dy(my(x),my(y)) < Ej. For each
i€ {l,...,m}, define U; to be the Cy-maximal element of Ry, if U; € G and define U;
to be U; if U; ¢ &, Let £ = {Uy,...,Upn}.

If V e & is nested into W, but is not nested into an element of £, then dy (7 (), 7y (y))

FE; and so

do(vo(x),vq(y)) < Ei + Er

for all @ € Ry. Thus, if do(Yo(x),vg(y)) = E? + Ey and Q is nested into W, then either
Q€ &\ G or Q € Ry where V is nested into an element of £ (and so @ is nested into
an element of £). If Q € &\ &% then () must be nested into an element of £ that is not
in & by the large links axiom of (Gr, Gr), and hence must be nested into an element of
£. Thus, Q = W is nested into an element of £ whenever do(vg(z),vg(y)) = E? + E\.

Consistency: Let U, W € %) with UAW and = € Gr. Since the relative projections are
inherited from Gr and the SRy, we only need to consider the case where either W € G and
UefRy,or WeRy and U € Ry with V! £ V. Define Q = W if W e & and Q = V' if
W € Ry. In either case QhgV .

First assume Q = W so that 84, = pg and B = 775(,08) If dy (, BY,) = dg(z, pg) > F,

then the consistency axiom for (G, &r) says dy (z, p%) < Ey. The coarse Lipschitzness of
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the projections then implies dy (z, 7Y (p9)) = dy(z, BY) < E? + Ej.

Now assume @ = V' so that A, = miy.(pf)) and Y = 7 (py). If dw(x, 8Y) > E? + B,
then dg(z, pg) > E1. The consistency axiom for (G, &r) then says dy (z, p?) < By and we
again have dy(z, V) = dy (z, 7 (p%)) < E? + Ej.

For the last clause of the consistency axiom, let Q, U, W € Ty with Q = U. If U © W, the
definition of nesting and relative projection in ¥, and the consistency axioms in (Gr, Sr)
and the (C(V),Ry) ensure that dyw (85, 84) < E? + Ey. Similarly, if W € &p with WAU
and W £ Q, then dy (8%, 8Y) < E? + Ey. Assume W € Ry for some V e &P, WhU,
and W £ Q. If U,Q € Ry, then VgV and Y, = Y. If U,Q € &y, then UhgV and
QheV. Thus, the consistency axiom for (Gr, Sr) provides dy (p¥, pg) < FE;. Similarly, if
U e & and Q € Ry, then UhgV, VhsV, and dy(p¥, pV') < E;. Hence in both cases
dw (Bl Biy) < E} + E\.

Partial realisation: Let W7, ..., W, be pairwise orthogonal elements of ¥y and p; €
C(W;) for each i € {1,...,n}. Since (Gr, Sr) satisfies the partial realisation axiom, we can
assume at least one W is not an element of Sy. There exist Vi, ..., V, € & so that for each
i € {1,...,n}, either W; € &r or there exists a unique j € {1,...,r} such that W; € Ry,.
For each j € {1,...,7}, let {W7,.. .,W,gj} be the elements of {Wy,...,W,} that are also
elements of Ry, and let v, ... ,pij} be the subset of {p1,...,p,} satisfying p! € C(W/) for
all je{l,...,r}andi e {1,...,k;}. Using partial realisation for each of the (C(V}),Ry,) on

the points p?, . .. ,p{;j produces a set of points yi, ...y, so that for each j € {1,...,7}:

e y; € C(Vj);

¢ dwi(yj,pf-) < Eyforallie{l,... kj};

e foreach i e {1,...,k;} and each U € Ry, if sz c U or ijU, we have dU(yj,pE/iJ) <
E;.

Assume, without loss of generality, that W,,,, W,,,,1, ..., W, are all of the W; that are not
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contained in any of the Ry, (it is possible the set of such W; is empty). Now, applying partial
realisation for (Gr,Sr) to y1,...,Yr, Pm, - - -, Pn Produces a point x € Gr so that Yy, (x) is
uniformly close to p; for each i € {1,...,n} and ¢y (x) is uniformly close to B;/* whenever
W; = U or UAW;, for any U € T,. Note, if the set of W; that are not elements of any of the

Ry, is empty, then the above applies just to yi,...,y,, but the conclusion still holds. O

Claim 4.3.4. The E;—proto-hierarchy structure ¥, has the following property: if Wy,..., W, €

%o are pairwise orthogonal, then n < F? + E.

Proof. Let Wy, ..., W, € T be pairwise orthogonal. Without loss of generality, let W7, ... W,
be the elements of {W;,...,W,} that are elements of &r. Since Wy, ..., W} is a pairwise
orthogonal collection of elements of Gr, Lemma 2.7.18 says k < Fj.

Let Vi, ..., V,, be the minimal collection of elements of G such that if i € {k+1,...,n}
(ie. W; ¢ &p), then W; € Ry, for some j € {1,...,m}. Minimality implies that for each
J € {l,...,m}, there exists i € {k + 1,...,n} such that W; € Ry,. Suppose W; € Ry, and
W, € Ry, with 5 # r. Since W; L Wy in Ty, then definition of orthogonality in ¥, implies
that V; Lg V.. Thus, Vi,...,V,, is a pairwise orthogonal collection of elements of Gr and
m < E; by Lemma 2.7.18. Similarly, for each j € {1,...,m} the set {W; : W; € Ry, } is
a pairwise orthogonal collection of elements of Ry, and must have cardinality at most Fj.

Putting this together, we have that n < k + Eym < E, + E}. ]

Claim 4.3.5. The action of Gt on Sr induces an action of Gr on ¥, that satisfies axioms

(2) and (3) of the definition of a hierarchically hyperbolic group (Definition 2.7.3).

Proof. The action of Gy on Ty: Let 0 € Gr and W € Ty. Define &: G x Ty — T, as

follows.

o If W = [gA] € S \ & then ®(o,[gA]) = [ogA], i.e., the action is the same as the

action of Gt on Gr.
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o If W = gR € Ry, for some [gv] € G, then (7g) 'og € Stabg,.([v]), where 7 is
the chosen fixed representative of [cgv] = [ogv]. Since Stabg,([v]) = {(st(v)), there
exists [ € (Ik(v)) and ¢ € (v) such that l6 = (og) '0g. Because Ry, is an HHG
structure for (v) = G, there exists R, = 6 R € MRy, determined by o and gR. Define
®(0,gR) = 0GR, € Ripg]- The following commutative diagram summarises how o

takes elements of Ry, to elements of R4y

Rigo) = Riog)
~| 4
s (2 R

We now verify that ® preserves the relations in Ty. Let W,U € T,. If W, U € &p \ &Gpn
or W,U € Ry for some [gv] € Smin then @ preserves the relation between W and U, since
the actions of Gr on &p and G, = (v) on R[, preserve the relations in their respective
hierarchy structures. If W e & ~\ 6% and U € Ry, then W = [hQ] and the relation
between W and U in T is the same as the relation between [h2] and [gv] in Sp. Thus, ®
preserves the relation between W and U, since the action of G preserves the relations in
Gr. Similarly, the same is true in the case where W € Ry, and U € Rppy for [gv] # [hw]
as the relation between W and U in % is the same as the relation between [gv] and [hw] in
Sr.

The definition of ® implies that gR € R, is in the Gr—orbit of hR' € R[nw) if and only
if v = w and R is in the G,~orbit of R'. Thus, the action of Gt on ¥, has finitely many
orbits since the actions of Gr on Gr and G, on Ry, contain finitely many orbits.

For the remainder of the proof we shall use oW to denote ® (o, W) for all W e T,. This
does not conflict with previous use of the notation as the action of Gr on ¥y agrees with
the action of Gr on &y or the action of G, on Ry, when W e &r or o € vy and W € R
respectively.

Associated isometries and equivariance with the projection maps: Let 0,7 € Gt
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and W € T,. Since the action of G on ¥ agrees with the action of Gr on Gr for the elements
of Ty in &r, we can define the isometry opgp1: C([gA]) — C([ogA]) to be the same as the
original isometry in (G, &r); this guarantees the HHG axioms are satisfied in this case.

If W e Rgyp, then W = gR for some R € R(,). Now oW = 5gR,, where R, is defined as

above. In this case, define the isometry oy : C(W) — C(cW) to be the composition
C(W) 2 O(R) 22 C(R,) 2o CloW)

where 6r: C(R) — C(R,) is the isometry in R, induced by ¢ € G, and gy and Ggp_ are
the isometries resulting from identifying R, with R, and R4, respectively.

Now, if 7 € Gr, then (G,, R[y)) being an HHG implies 7z, 06z = 7o . Thus the isometry
(To)w equals the isometry 7,1 o oy for any W e T,. We continue to use the notation set
out before Claim 4.3.2: v, and S denote the projections and relative projections in ¥,
while 73 and pj denote the projections and relative projections in &p and Ry,,. Since the

[gv]

W) is equal to w3 o T[gv], the uniform bound on the distance

projection map ¥y : Gp — 2¢
between ¢ow (0x) and ow (Yw()) follows from the HHG axioms of (G, &r) and (G, Ry)).
Similarly, since the relative projection Sy, (where U &= W or UAW in T;) is defined using
the coarsely equivariant projections and relative projections of Gr and 9Ry,), we have that

ow (B8Y) is uniformly close to 875, whenever U = W or UAW . O

We now conclude the proof of Theorem 4.3.1 by noting that Claims 4.3.3, 4.3.4, and 4.3.5
show that the proto-hierarchy structure ¥, defines an almost HHG structure on Gr. Thus,

there exists an HHG structure ¥ for Gt by Theorem 3.0.1 and Remark 3.0.6. [

4.3.2 Meier’s condition for hyperbolicity

We now recover a theorem of Meier classifying hyperbolicity of graph products. We do this

by applying Behrstock, Hagen and Sisto’s bounded orthogonality condition for hierarchically
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hyperbolic spaces (Theorem 2.7.12).

Theorem 4.3.6 (Meier’s criterion for hyperbolicity of graph products; [Mei96]). Let T' be a
finite simplicial graph with hyperbolic groups associated to its vertices. Let I'r be the induced
subgraph spanned by the vertices associated with finite groups. Then Gr is hyperbolic if and

only if the following conditions hold.

(i) There are no edges connecting two vertices of I' \ I'p.
(i1) If v is a vertex of I' N\ I'r then 1k(v) is a complete graph.
(i1i) T'r does not contain any induced squares.

Proof. We show hyperbolicity via the bounded orthogonality condition of Theorem 2.7.12,
noting that since each of the vertex groups is hyperbolic, the graph product Gt is an HHS.
We call the vertices of I'r the finite vertices of I' and the vertices of I' N\ I'r the infinite
vertices of T.

(=) Suppose we have bounded orthogonality. Then:

(i) Suppose two infinite vertices v, w are connected by an edge. Then [v] L[w] and C'(v), C(w)
have infinite diameter as they are the infinite groups G,, GG, with the word metric. This

contradicts bounded orthogonality.

(ii) Suppose lk(v) is incomplete for some vertex v of I' \ I'r.  Then there exist some
vertices x,y in lk(v) with no edge between them. Moreover, [v] L[z U y], C(v) has
infinite diameter as v is an infinite vertex, and C(z U y) has infinite diameter since
dyuy(e, (929,4)") = 2n for elements g, € G, \ {1}, g, € G, \ {1}. This again contradicts

bounded orthogonality.

(iii) Suppose I'r contains a square with vertices v, z,w,y, where v,w and z,y are non-
adjacent. Then [v U w] L[z Uy] and both C(v U w) and C(z U y) have infinite diameter

as in case (ii). Once again, this contradicts bounded orthogonality.
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(<) Conversely, suppose conditions (i)—(iii) hold and let D = max{2,|G,| : v € Tg}.
Moreover, suppose [gA], [h€2] € & satisfy [gA]L[h€2].

Suppose diam(C(gA)) > D. Then Theorem 4.2.10 tells us that either A consists of a
single infinite vertex or A contains at least 2 vertices and does not split as a join.

If A consists of a single infinite vertex, then conditions (i) and (ii) tell us that lk(A) 2 Q
is a complete graph consisting of finite vertices, hence either €2 is a single finite vertex or €2
splits as a join. In both cases, diam(C(h2)) < D.

If A contains at least 2 vertices and does not split as a join, then in particular it contains
two non-adjacent vertices v and w. As Q < lk(A), every vertex of  is connected to both
v and w. Condition (iii) implies that every pair of vertices of {2 must be connected by an
edge, and condition (i) then implies that {2 € I'r. That is, (2 either consists of a single finite
vertex or splits as a join. In both cases, diam(C'(hf2)) < D. Thus the bounded orthogonality

condition holds. O

4.3.3 Genevois’ minsquare electrification.

We now use our characterisation of when C'(gA) has infinite diameter (Theorem 4.2.10) to

answer two questions of Genevois [Genl9b, Questions 8.3, 8.4| regarding the electrification

of Gr, defined as follows.

Definition 4.3.7. Let I" be a simplicial graph. An induced subgraph A < I’ is called square-
complete if every induced square in I" sharing two non-adjacent vertices with A is a subgraph
of A. A subgraph is minsquare if it is a minimal square-complete subgraph containing at
least one induced square.

The electrification E(I') of a graph product Gr is the graph whose vertices are elements
of Gt and where two vertices g and h are joined by an edge if g7'h is an element of a vertex
group or g~'h € (A) for some minsquare subgraph A of I'. We use dg(g,h) to denote the

distance in E(I") between g, h € Gr.
138



Genevois’ interest in the electrification arises from the fact that it forms a quasi-isometry
invariant whenever the vertex groups of a graph product are all finite, as is the case for

right-angled Coxeter groups.

Theorem 4.3.8 ([Genl9b, Proposition 1.4]). Let Gr and G, be graph products of finite

groups. Any quasi-isometry Gr — Gy induces a quasi-isometry between E(I') and E(A).

For graph products of finite groups, we classify when E(I') has bounded diameter and
when E(T") is a quasi-line. These classifications answer Questions 8.3 and 8.4 of [Gen19b]| in
the affirmative. The core idea behind both proofs is the same: when I' is not minsquare, the
electrification E(I") sits between the syllable metric S(I') and the subgraph metric C(I"), that
is, we obtain E(I") from S(I') by adding edges and then obtain C(I") from E(I") by adding
more edges. This means large distances in C'(I"), which we can detect with Theorem 4.2.10,
will persist in E(I'). We start with a lemma that we use in both classifications to reduce to

the case where I' does not split as a join.

Lemma 4.3.9. If " splits as a join and contains a proper minsquare subgraph, then I' splits
as a join I' = T'y * 'y where I'y contains every minsquare subgraph of I' and 'y is a complete

graph. In this case, B(T") is the 1-skeleton of E(T'1) x E(T's).

Proof. Suppose I' contains a proper minsquare subgraph A and splits as a join I' = Q; * Q.
We first show I" splits as a (possibly different) join I'y * 'y, where I'; contains the minsquare
subgraph A. If A is a subgraph of either €2; or 25 we are done. Otherwise, A contains vertices
of both €2, and 5. By minimality of A, there must exist a square of A containing vertices
of both €y and €2,. Moreover, since €2; and €2 form a join, this square must arise in the
form of two pairs of disjoint vertices v;, w; € V(€;), i@ = 1,2. Then any vertex v of 1 \ A
must be connected to every vertex w of A n €y, else v, w, v9, wy form an induced square,
contradicting square-completeness of A. Similarly, any vertex of {25 \. A must be connected
to every vertex of A n 25. This then gives a decomposition of I' as a join of the minsquare

subgraph A and the graph I" \0 A.
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We have shown that I' splits as a join I'y * I'y with A < I'y. We now show that I's must
be a complete graph. Since A is minsquare, there exists an induced square S in A < I'y.
Let vy, w; be two disjoint vertices of S, and suppose there exists a pair of disjoint vertices
v, wo in I'y. Since I' is a join of I'y and I'y and A < I'y, the vertices vy, wy, ve, wo, define an
induced square that shares two opposite vertices with A, but is not contained in A. This
would contradict square-completeness of A. Therefore, I'y must be complete.

Finally we show that every other minsquare subgraph of I' must also be contained in
I'y. Let Q < I' be minsquare. If four vertices vy, v9, v3,v4 of €2 form an induced square of
I', then each v; must be contained in I'y, since any v; that I'y contains must be connected
to all v; in I'y, but I'y cannot contain a pair of disjoint vertices since it is complete. Thus
the minimality of €2 implies {2 must be contained in I'; (otherwise 2 N T'; would be a proper
square-complete subgraph of Q).

Since I" splits as a join I'y » 'y, it follows that S(I") is the 1-skeleton of S(I';) x S(I'9)
and since the only minsquare subgraphs of I' are the minsquare subgraphs of I'y, E(T") is the

1-skeleton of E(I';) x E(I'y) by construction. O

We now show that E(I") is bounded only in the obvious cases.

Theorem 4.3.10. The electrification E(T') is bounded if and only if I is either minsquare,

complete, or splits as a join of a minsquare subgraph and a complete graph.

Proof. We first show that if I' is minsquare, complete, or splits as the join of a minsquare
subgraph and a complete graph then the electrification is bounded. If I" is minsquare, then
E(T) has diameter 1 by definition. Let x,y be vertices of E(T"), so that x7'y € Gp. If T'
is a complete graph on n vertices, then all vertex groups of I' commute, so we can write
x7ly = s1...s, where supp(s;) = v; € V(') and v; # v; for all i # j. Thus dg(z,y) < n,
hence E(T") is bounded. If T splits as a join of a minsquare subgraph I'; and a complete graph

[y on n vertices, then Gr =~ (I';) x (I';) and so we can write 27 'y = g9, where g; € (I';).

Therefore dg(z,y) < n + 1, hence E(I") is bounded.
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We now assume E(I") is bounded and prove this implies I is either complete, minsquare,
or splits as a join of a minsquare subgraph and a complete graph. The proof will proceed
by induction on the number of vertices of I'. The base case is immediate as [' is complete
and E(T") has diameter 1 when T is a single vertex. Assume the conclusion holds whenever
the defining graph has at most n — 1 vertices. Let Gr be a graph product of groups where

I" contains n > 2 vertices.

Claim 4.3.11. If E(T') is bounded and T' is neither complete nor minsquare, then I" must

split as a join and must contain a proper minsquare subgraph.

Proof. Suppose I' does not split as a join. By Theorem 4.2.10, C(T") is therefore unbounded.
Since I' is not minsquare, E(I') is C'(I') with some edges removed, so if C(I') has infinite
diameter then so does E(I'). That is, if [' is not minsquare and does not split as a join then
E(T) is unbounded, contradicting our assumption.

Now suppose I' does not contain any proper minsquare subgraphs. Then E(T") is simply
Gr with the syllable metric. Since I' is not complete, there exist two disjoint vertices v, w €
V(I"). Therefore dg(e, (¢y94)™) = 2m for any g, € G, \ {e} and g, € G, \ {e}, hence E(T")

is unbounded, a contradiction. O

Assume that I' is neither complete nor minsquare, so that I' must contain a strict min-
square subgraph A and splits as a join by Claim 4.3.11. By Lemma 4.3.9, I' must split as a
join of T'; and 'y where I'y is complete and E(T") is the 1-skeleton of E(T';) x E(I'y). Thus,
E(T') having bounded diameter implies E(I';) must also have bounded diameter. Since I'y
contains at most n — 1 vertices, the induction hypothesis then implies I'y is either minsquare,
complete, or splits as a join of a minsquare subgraph and a complete graph. Since A < T’y
contains a square, I'; cannot be complete. Thus, I'; is either minsquare or a join of A with
a complete graph 2. Hence, I' either splits as a join of the minsquare subgraph I'y and
the complete graph I's, or as a join of the minsquare subgraph A and the complete graph

Q FQ. ]
141



Finally, we show that E(I') being a quasi-line coincides with Gt being virtually cyclic.
The key step of the proof is to produce two elements of Gr that act as independent loxodromic
elements on C'(I'). This creates more than two directions to escape to infinity in C'(I"), which

then gives more than two direction to escape to infinity in E(T).

Theorem 4.3.12. Let Gr be a graph product of finite groups. The electrification E(T') is a

quasi-line if and only if Gr is virtually cyclic.

Proof. A graph product of finite groups Gr is virtually cyclic if and only if either I' is a pair
of disjoint vertices each with vertex group Zs or I splits as a join I'y x I'y, where I'; is a pair
of disjoint vertices each with vertex group Z, and T'y is a complete graph (this follows from
[BPR19, Lemma 3.1]). Thus, if Gr is virtually cyclic, then E(I') = S(I") is a quasi-line by
construction.

Let us now assume Gr is not virtually cyclic. If ' is either minsquare, complete, or
the join of a minsquare graph and a complete graph, then E(I") has bounded diameter by
Theorem 4.3.10 and is therefore not a quasi-line. Let us therefore assume that I' is not
minsquare, not complete, and does not split as a join of a minsquare graph and a complete
graph.

First assume I" does not split as a join at all. Since the action of Gr on C(I') by left
multiplication is acylindrical (Corollary 4.2.24), Theorem 2.3.2 says Gr must satisfy exactly
one of the following: Gr has bounded orbits in C(I'), Gr is virtually cyclic, or Gr contains
two elements that act loxodromically and independently on C(I"). Since I' does not split
as a join, the proof of Theorem 4.2.10 implies that Gr does not have bounded orbits in
C(T'). Further, Gr is not virtually cyclic by assumption. Thus, there exist g,h € Gr such
that n — nr(¢") and n — 7p(h") are bi-infinite quasi-geodesics in C'(I') whose images,
7r({g)) and 7r({h)), have infinite Hausdorff distance from each other. Now, since I" is not
minsquare, C'(I') is obtained from E(I') by adding edges and therefore dr(z,y) < dg(z,y)

for all z,y € Gr. Hence, the subsets (g) and (h) in E(I') are also the images of bi-infinite
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quasi-geodesics that have infinite Hausdorff distance from each other. This implies E(T) is
not a quasi-line, as any two bi-infinite quasi-geodesics in a quasi-line have finite Hausdorff
distance.

Now assume I" splits as a join. If I' contains no minsquare subgraph, then E(I') = S(I).
Since the vertex groups are all finite, S(I') is quasi-isometric to the word metric on Gr and
hence S(I') = E(T") is not a quasi-line, because we assumed Gr is not virtually cyclic. Thus
we can assume [' contains a minsquare subgraph A. By applying Lemma 4.3.9 iteratively,

we have that I' splits as a join I' = I'; » I'y such that:
e ['; either does not split as a join or is minsquare;
e ['5 is a complete graph;
e E(I') is the 1-skeleton of E(I'y) x E(T'y).

Recall that we are assuming I' does not split as a join of a minsquare graph and a complete
graph, hence I'y cannot be minsquare and thus must not split as a join by the first item
above. Further, (I'y) is not virtually cyclic since it is a finite index subgroup of Gr, which
is not virtually cyclic. Thus, we can apply the previous case to conclude that E(I'y) is not a

quasi-line and hence E(I") is not a quasi-line. O
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Chapter 5

Non-positive curvature in graph braid

groups

In this chapter we will develop an explicit HHG structure for graph braid groups by using
the cubical structure described in Section 2.5. We shall then use this HHG structure to char-
acterise when a graph braid group is hyperbolic (Theorem 5.2.1) or acylindrically hyperbolic
(Theorem 5.2.4), as well as conjecturing and partially proving a characterisation of relative
hyperbolicity and thickness (Conjecture 5.2.6 and Theorem 5.2.7).

Throughout this chapter we shall take I' to be a finite, connected graph and consider the
graph braid group B,(I') for n € N. The case where I' is disconnected may be treated by
applying Lemma 2.5.2 and using Behrstock—Hagen—Sisto’s construction of HHG structures
on products of HHGs [BHS19, Section 8.3]. This then reduces our analysis to the connected

case.

Convention 5.0.1. In order to avoid confusion between edges of the graph I' and edges of
the cube complex UC,(I") when discussing the structure of a graph braid group B, (I'), we
shall adopt the convention of denoting edges of I' by e and edges of UC,,(I") by E. Moreover,

e will denote a closed edge of I', unless otherwise specified.
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5.1 The hierarchically hyperbolic structure on a graph
braid group

Recall that in Section 2.7.4 we showed a graph braid group B, (I") has the structure of a hier-
archically hyperbolic group by virtue of its cubical structure (Corollary 2.7.25). In particular,
by sufficiently subdividing edges of I', we obtain a new graph I'" such that B, (I") is isomor-
phic to the fundamental group of the unordered combinatorial configuration space UC,,(I")
(Theorem 2.5.5), and moreover UC,,(I'") is a compact special cube complex (Corollary 2.5.7).

Since B, (I") is isomorphic to B,(I"), we may drop the I' notation entirely and simply
work under the assumption that I' satisfies the conditions of Theorem 2.5.5. We shall adopt
this convention for the remainder of the chapter. Note that in particular, I' can be assumed
to be a simplicial graph.

Hierarchical hyperbolicity of B,(I") is obtained via its action on the universal cover X
of UC, ("), which is a CAT(0) cube complex. Since UC,(I") is a special cube complex with
finitely many hyperplanes, it follows that X has a factor system that is invariant under the
action of m (UC,(I")) = B,(I"), by Theorem 2.7.23. We can then apply the construction in

Section 2.7.4 to obtain an explicit HHG structure for B, (I).

5.1.1 The cubical structure

Recall that UC,(I") is a compact cube complex, as described in Section 2.5. Fach vertex of
the cube complex is a configuration of the n particles on the vertices of the graph I'. Two
vertices of UC,,(I") are connected by an edge if one configuration can be obtained from the
other by moving a particle along an edge of I' to a vacant neighbouring vertex. Two adjacent
edges of UC,(T") span a square if the corresponding moves can be performed independently
of each other.

More concretely, we have the following construction, as described by Genevois [Gen19a].

145



(See Figure 5.1 for an example.)
e The vertices of UC,,(T") are the subsets S of V(I') with cardinality |S| = n.

e Two vertices S and S’ of UC,,(I") are connected by an edge if their symmetric difference
SAS' is a pair of adjacent vertices of I'. We therefore label each edge E of UC,(T")
with a closed edge e of I'. Note that S n.S” is a subset of V(I" \ e) of cardinality n — 1;
that is, S n S’ is a vertex of UC,,_1(I' \ e). Here, I' \ e denotes the induced subgraph

of T" spanned by the vertices V(I') \ V(e).

e A collection of m edges of UC,,(I') with a common endpoint span an m—cube if their

labels are pairwise disjoint.

[\] —

w

W

ot (@)
Tt e W N

6

Figure 5.1: An example of an unordered combinatorial configuration space. The vertices of
[’ are labelled to more easily see the construction of the cube complex. One can see that
UCy(T) ~ T? v S' v S, thus By(T') = Z* = Fy. Note that the torus arises as the product of
the two 3—cycles in I'.

Remark 5.1.1. We make heavy use of the above description of UC,(I') in that which
follows. It is important to keep in mind that when we refer to a vertex S of UC,,(I"), we are

considering S to be a subset of V(I") of cardinality n.

Genevois uses the above description of UC,, (") to give an important characterisation of

the hyperplanes of UC,,(T").

146



Lemma 5.1.2 (Hyperplane labelling; [Genl9a, Lemma 3.6]). Let Ey and Ey be two edges
of UC,(T") and denote the endpoints of E; by S;,S. for i = 1,2. The edges Ey and Ey are
dual to the same hyperplane if and only if they are labelled by the same closed edge e of T’

and Sy N Sy, Sy N Sy are in the same connected component K. of UC,_1(I' \ e).
Remark 5.1.3 (Labelling hyperplanes and embedding combinatorial hyperplanes).

(1) Lemma 5.1.2 tells us that hyperplanes H of UC, (") can be consistently and uniquely
labelled by pairs (e, K. ), where e is a (closed) edge of I and K, is a connected component
of UC,_1(I'\ve). Let E' be an edge of UC,,(I"). Then E’ is an edge of some combinatorial
hyperplane H’ associated to H if and only if there exists some edge E dual to H such
that F and F’ span a square. Thus, the labels of ' and E’ are disjoint closed edges of
I['; that is, the edges of H' are labelled by edges of I" \ e.

(2) Crossing a hyperplane corresponds to moving a particle along the associated edge e of T',
and travelling along a combinatorial hyperplane from S; to S5 corresponds to rearranging
the remaining n — 1 particles from the configuration S; NS} to the configuration Sy N S}
without using the edge e. It therefore follows that K. < UC,,_;(I' \ e) has two canonical
isometric embeddings in UC,,(I"), as the two combinatorial hyperplanes. More generally,
intersections of combinatorial hyperplanes are isometric to connected components of
complexes UC}(A), where k < n and A is obtained from I' by removing a collection of

disjoint closed edges.

5.1.2 The HHG structure

The goal of this section is to describe the HHG structure on a graph braid group B, (I)
afforded by Corollary 2.7.25 in terms of the graph I'. This will enable us to characterise
hyperbolicity, acylindrical hyperbolicity, relative hyperbolicity, and thickness in terms of T'.

To this end, we study a natural collection of subgroups of B, (I") that we call the graphical

147



subgroups, constructed as follows. Again, it is important to note that in what follows, vertices

of UC,(TI") are considered as subsets of V(I') of cardinality n.

Definition 5.1.4 (Graphical subgroup). Let I' be a finite connected graph, let A € I be a
subgraph with no isolated vertices, and choose a base point T'e UC,, (') with [T n A| = k.
Then the connected component K of UC,(A) containing S = T'n A is embedded isometrically
as a subcomplex of UC,,(T") by fixing all particles in 7" n (I' \ A) and restricting the motion
of the remaining k particles to A. Furthermore, by [HW08, Lemma 2.11| this embedding is
mi—injective, thus induces an embedding of By (A, S) as a subgroup of B, (I'). We call this a

graphical subgroup and denote it (A, k, S).

Remark 5.1.5. We may define an equivalence relation ~ on the vertices of UCL(A) by
writing S ~ S’ if S and S’ are in the same connected component of UC)(A). Note that
(A K, S) and (A, k,S") define the same graphical subgroup if and only if S ~ 5’. We may
therefore change the base point S to another S’ in the same ~—equivalence class if convenient,

without affecting the graphical subgroup. We take advantage of this fact frequently.

Remark 5.1.6. Let X be the universal cover of UC,(I") and let (A, k,S) be a graphical
subgroup of B, (I"). Embed the connected component K of UCy(A) containing S into UC,(T")
as in Definition 5.1.4, then consider its universal cover as a subcomplex K of X. Then K is

quasi-isometric to (A, k, S) via the orbit map, by the Milnor-Svarc lemma.

The above remark gives us a correspondence between cosets of graphical subgroups and
subcomplexes of the universal cover of UC,(I"). In order to define our HHG structure for

B, ("), we will need to develop a version of parallelism for our graphical subgroups.

Definition 5.1.7. (Parallelism) Let g{A, k, S) and h{§2, [, T") be cosets of graphical subgroups
of B,(T'). We say g{A,k,S) is parallel to h{Q, [, T) if A = Q, k =1, S and T are in the
same connected component of UCy(A), and g~'h is in a graphical subgroup (II, n, S"), where

II=Au('\A)and S"n A =S. This defines an equivalence relation on the collection of
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graphical subgroups of B,(I"). We call the equivalence classes with respect to this relation

the parallelism classes of cosets of graphical subgroups.
Remark 5.1.8. Note that:

(1) Each graphical subgroup (II,n,S") as above splits as a product

I,n, S = (N k,S) x TN An—Fk S n(T\A))

by Lemma 2.5.2. Indeed, these are the maximal product subgroups with (A, k,S) as a

factor.

(2) A priori, T' ~ A may contain isolated vertices, and thus (I' \ A,n — k,S") is not well-
defined as a graphical subgroup. However, we may always remove these isolated vertices
from I' ~ A to obtain a graph (I' \~ A)" which defines a genuine graphical subgroup
(N A m, S n (' ~A)), where m = |S" n (I' <~ A)’|. Moreover, the connected
component of UC,,,((I' ~ A)’) containing 5" n (I' \ A)’ is isometric to the connected

component of UC,,_x(I" \. A) containing S’, justifying this abuse of notation.

As each graphical subgroup (A, k,S) is isomorphic to the graph braid group By(A,S),

they also admit the following useful classification of diameter due to Genevois.

Lemma 5.1.9 (Diameter of graphical subgroups; |Genl9a, Lemma 4.3|). Let I' be a finite
connected graph and let n € N. Let (A, k,S) be a graphical subgroup of B, (I'). Then (A, k,S)

has infinite diameter if and only if one of the following holds; otherwise, (A, k,S) is trivial.
(1) k =1 and the connected component of A containing S has a cycle subgraph.

(2) k =2 and either A has a connected component whose intersection with S has cardinality
at least 1 and which contains a cycle subgraph, or A has a connected component whose
intersection with S has cardinality at least 2 and which contains a star subgraph.
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We are now ready to define our HHG structure.

Theorem 5.1.10 (HHG structure of a graph braid group). Let T" be a finite connected graph.

The graph braid group B, (I') has an HHG structure & such that:

(1) (Index set.) The index set & consists of exactly one coset of a graphical subgroup
g\, k,S) from each parallelism class. Without loss of generality, we may take g = e

where possible.

(2) (Nesting.) Given g{A,k,S),{Q,1,T) e &, we have g{A,k,S) € K{Q,1,T) if A < Q,
k<l, S and T n A are in the same component of UCk(A), and g(A,k,S) is parallel to
h{A,k,S>.

(3) (Orthogonality.) Given g{A,k,S),hW{Q1,T) € &, we have g{A, k,S)Lh{(Q,1,T) if
AnQ =, k+1 <n, and there exists a € B,(I') such that g(A,k,S) is parallel to
alA,k, Sy and h({Q,1,T) is parallel to a{),1,T).

Proof. Let H = {(e, K.) | e€ E(I'), K. € my(UC,—1(I' " €))}. Remark 5.1.3(1) tells us that
H is in one-to-one correspondence with the collection of hyperplanes of UC,(I"). Let = be
the crossing graph of UC, ('), so that its vertices are in one-to-one correspondence with
elements of H, and let R be the collection of all subgraphs of =.

Take Q € R, so that we have Q) < H. Given two edges E, E' of UC,(T'), write E ~q E'
if there is a sequence of consecutive edges E = Ey, Es, ..., E; = E' of UC,(T") such that for
each i, (e;, K,,) € Q(O), where e; is the label of E; and K., is the connected component of
UC,—1(I' \ ¢;) containing the intersection S; n S/ of the endpoints of E;. In other words,
E ~q E' if there is an edge path v in UC,(I')Y) from E to E’ such that each edge of 7 is
dual to some hyperplane of Q©.

Let [E]q denote the equivalence class of E with respect to ~q, and define UCS{T") to be
the collection of induced subcomplexes of UC,,(I") whose 1-skeleton is [E]q for some edge

E. Let Aq be the subgraph of I' defined by taking the union of all edges e € E(I") such
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that (e, K,) € Q© for some K,. Let E be an edge of UC,(I') dual to some hyperplane
(e, K.) € QO so that S nAqg # & and S n (I' < e) € K, for each endpoint S of E (and
moreover S N Ag does not depend on the choice of endpoint). Let k =[S n Aq|. Then [E]q
is isometric to the 1-skeleton of the connected component of UC)(Ag) containing S N Agq.

Theorem 2.7.23 implies that the universal cover X of UC,(I") has a factor system §
consisting of all lifts of subcomplexes in | . U C(T), where each of these subcomplexes is
isometric to a connected component of some UCy(Ag). Note that Aq < I' is expressible as
a union of closed edges by construction; that is, it contains no isolated vertices. Thus, each
F € § is quasi-isometric to a coset of a graphical subgroup (Aq, k, S n Ag) via the orbit map,
by Remark 5.1.6. Moreover, since R consists of all subgraphs of =, all graphical subgroups
can be expressed in this form.

Applying the construction in Section 2.7.4, we obtain an HHS structure on X with index
set T consisting of exactly one element of § from each parallelism class. Furthermore, this
induces an HHG structure & on m (UC,,(I")) = B,(I") by composing the projections in (X, T)
with an orbit map, as explained in Remark 2.7.4. Remark 5.1.6 tells us that elements of
G are cosets of graphical subgroups. Moreover, the characterisation of parallelism given by
Lemma 2.4.7 combined with Remark 5.1.8(1) tells us that parallelism classes in § correspond
to parallelism classes of graphical subgroups. Thus, & consists of exactly one coset of a
graphical subgroup g{A, k, S) from each parallelism class. Since there are no restrictions on
the elements of parallelism classes chosen for T, we are free to choose the elements of & so
that g = e wherever possible. Thus, item (1) of our theorem is satisfied. Item (2) then follows
immediately from the definition of nesting for (X,¥) given in Section 2.7.4 by expressing
this definition in terms of the corresponding graphical subgroups. For item (3), note that
if g(A,k,S),h{Q2,1,T) € &, then Lemma 2.5.2 tells us that we have a graphical subgroup
ANOUQE+1,SUT) =Nk, S)x {1, Tyif and only if AnQ = ¢ and k +1 < n. The

result then follows from the definition of orthogonality for (X, ¥) given in Section 2.7.4. [
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Remark 5.1.11 (The hyperbolic spaces associated to B,(T')). As explained in the above
proof, our HHG structure & on B,(I') = m(UC,(I")) is induced by an HHS structure
% on the universal cover X of UC,(I"), by composing the projections in ¥ with an orbit
map. In particular, the hyperbolic spaces of & are hyperbolic spaces of €. That is, if
g\, k,S) € & is quasi-isometric to a subcomplex Y of X via the aforementioned orbit map,
then C(g{A, k,S)) = C(Y), where C(Y) is the factored contact graph of the cube complex
Y, defined in Section 2.7.4.

Note, if one graphical subgroup is nested in another, then it embeds as a subgroup.

Lemma 5.1.12. Let (A k,5),{Q,1,T) € & be graphical subgroups of B, (') and suppose
(A K, S)C (1, TY. Then (A, S) < (1, T).

Proof. Let K, denote the connected component of UCy(A) containing S, and let K¢ denote
the connected component of UC)(£2) containing 7. Then (A, k,S) = m(K,) and (2,1, T) =
m(Kq). If Ak, S) = (Q,1,T), then A € Q, k <[, and S and T n A are in the same
connected component of UC,(A). Thus, we obtain an isometric embedding of K into Kq
by fixing the [ — k particles in 7' n (£2 . A) and restricting the motion of the remaining k
particles to A. Furthermore, by [HWO08, Lemma 2.11]| this embedding is m—injective, thus
induces an embedding of (A, k, S) as a subgroup of (2,1, 7). ]

By applying the following theorem of Behrstock-Hagen—Sisto, we may modify the HHS
structure (B, (I"), &) by removing any domains with finite diameter in B, (I"). In the state-
ment of the theorem below, the space Fy; refers to one of the factors of the standard product
region associated to a domain U. We shall not go into any details about these; we refer the
reader to [BHS19, Section 5.2| for more information. The important point to note is that if
U € & is a graphical subgroup, then Fy is quasi-isometric to U itself, by [BHS17b, Remark
13.5].
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Theorem 5.1.13 ([BHS17a, Proposition 2.4|). Let (X,S) be an HHS, and let 4 = & be
closed under nesting. Suppose there exists D > 0 such that diam(Fy) < D for each U € l.
Then (X,6 W) is an HHS, where the associated C(x),my, pi, E, L, are the same as in

the original structure.

Corollary 5.1.14. Let 8l = & be the collection of domains g{A,k,S) with finite diameter
in B,(T"). Then (B,(I'),& \ ) is an HHS.

Proof. Let g(A,k,S) € 4 and suppose h({Q,[,T) = g{A,k,S). By definition of nesting, we
have Q € A, I < k, and T and S N () are in the same connected component of UCj(€2). Thus,
(Q,1, Ty embeds as a subgroup of (A, k,S) by Lemma 5.1.12. Since g{A,k,S) has finite
diameter, it therefore follows that h{{2,{,T") has finite diameter too, and so h{€2,{,T) € L.
Thus, U is closed under nesting. Furthermore, the bound on the diameter of graphical
subgroups in 1 is uniform by Lemma 5.1.9 (in fact, it is 0). This in turn uniformly bounds
the diameter of the spaces Fyy for U € U, as Fyy is quasi-isometric to U by [BHS17b, Remark
13.5]. We can therefore apply Theorem 5.1.13 to conclude that (B,(I"), &~\4l) is an HHS. O

In Section 5.2.2 we shall take advantage of this result to assume that every domain

g{A, k, S) € & has infinite diameter in B,(T).

5.2 Detecting other forms of hyperbolicity in a graph
braid group

In this section, we classify when a graph braid group is hyperbolic or acylindrically hyper-
bolic, and provide a conjectural classification of relative hyperbolicity and thickness. This
builds upon results of Genevois, who obtained a classification of hyperbolicity, acylindrical
hyperbolicity, and toral relative hyperbolicity [Genl9a|. In the hyperbolic case, we use the

bounded orthogonality criterion (Theorem 2.7.12) to recover a version of Genevois’ theorem.
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In the acylindrically hyperbolic case, we use Behrstock-Hagen—Sisto’s criteria for acylindrical
hyperbolicity in HHGs (Theorem 2.7.13). In the relatively hyperbolic case, we adapt tech-
niques developed by Levcovitz in his classification of relative hyperbolicity and thickness for
right-angled Coxeter groups [Lev20]. In particular, we introduce a sequence of hypergraphs
which encode collections of mutually orthogonal domains arising in the HHG structure of
a graph braid group B,(I'). By analysing connectedness properties of these hypergraphs
and applying Russell’s isolated orthogonality criterion (Theorem 2.7.15), we conjecture a
characterisation of when the graph braid group is relatively hyperbolic. By construction,
our hypergraphs show that any graph braid group which does not satisfy the isolated or-
thogonality criterion is in fact strongly thick, and moreover we obtain an upper bound on

the order of thickness.

5.2.1 Hyperbolicity and acylindrical hyperbolicity

The HHG structure (B, (I"), &) allows us to easily detect when the graph braid group is hy-
perbolic or acylindrically hyperbolic. Indeed, the bounded orthogonality criterion (Theorem
2.7.12) allows us to obtain a classification of hyperbolicity of graph braid groups, giving an

alternate proof of a theorem of Genevois.

Theorem 5.2.1 (Characterisation of hyperbolicity; [Genl9a, Theorem 4.1|). Let I' be a
finite connected graph and let n € N. The graph braid group B, (I") is hyperbolic if and only

if one of the following holds.
(1) n=1.
(2) n=2 and I does not contain two disjoint cycle subgraphs.

(8) n =3 and T does not contain two disjoint cycle subgraphs, nor does it contain a disjoint

star subgraph and cycle subgraph.

(4) n =4 and I does not contain two disjoint subgraphs, each of which is a star or a cycle.
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In order to prove this theorem, we modify the HHG structure on B,(T") slightly by
choosing a smaller factor system for the universal cover X of UC,(I"), obtained by closing
the set of subcomplexes parallel to combinatorial hyperplanes under large projections. Using
our characterisation of combinatorial hyperplanes (Remark 5.1.3), we see that this gives us
a smaller index set & < & for B,(I"), consisting of cosets of graphical subgroups of the form
I\ (egu---uep),k,S) for some (possible empty) set of disjoint closed edges ey, ..., e, of
I". Recall that I"\ e denotes the induced subgraph of I' spanned by the vertices V(I') \ V (e).

Using this new HHG structure (B, (I'), &), we have the following result.

Lemma 5.2.2. Let (A, k,S) € &. The hyperbolic space C({A,k,S)) is unbounded if and

only if A is connected and (A, k,S) has infinite diameter.

Proof. Suppose (A, k, S) has infinite diameter and suppose A is connected. We claim that

the universal cover Y of UC%(A) does not split as a product of subcomplexes.

Claim 5.2.3. Suppose A is connected. Then the universal cover Y of UC(A) does not split

as a product of subcomplexes.

Proof of claim. Suppose Y splits as a direct product Y = Y; x Y5. Recall that each edge
of UCk(A) is labelled by a closed edge of A, two adjacent edges of UCy(A) span a square
if and only if they are labelled by disjoint edges of A, and opposite edges of a square are
labelled by the same edge of A. Thus, we may also label edges of Y by closed edges of A by
projecting to UCk(A), and moreover if two edges of Y span a square then they are labelled
by disjoint edges of A. Furthermore, since every edge of Y = Y] x Y, has the form E; x {ys}
or {y1} x Ey where E; is an edge of Y; and y; is a vertex of Y;, the labelling of edges of
Y induces a labelling of edges of Y; for i = 1,2 (this induced labelling is well-defined since
opposite edges of a square in Y have the same labels). Let A; be the subgraph of A spanned
by the edge labels of Y;, for ¢ = 1,2. Then A; U Ay = A. Moreover, every edge of A; must

be disjoint from every edge of A,, since every edge of Y; spans a square in Y with every
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edge of Y5. This contradicts connectedness of A. Thus, Y does not split as a product of

subcomplexes. O

A result of Hagen now tells us that the contact graph Cy(Y') must be unbounded [Hag12,
Theorem 6.3.6]. (Note, we can ensure that Y is leafless by applying Caprace-Sageev’s pruning
procedure, which will not affect (A, k, S) [CS11|.) Furthermore, C'((A, k, S)) is the factored
contact graph C(Y') by Remark 5.1.11, which is quasi-isometric to the contact graph Cy(Y)
by [BHS17b, Remark 8.18]. Thus, C'((A, k, S)) is unbounded.

Conversely, suppose either (A, k, S) has finite diameter or A is disconnected. If (A, k, S)
has finite diameter then it must be trivial by Lemma 5.1.9. Thus, the cube complex Y has
finitely many hyperplanes and hence C'(Y') = C((A, k, S)) is bounded. If A is disconnected
then Y splits as a product by Lemma 2.5.2. Thus, the factored contact graph C(Y) =
C({A,k,S)) is bounded by [Hagl2, Theorem 6.2.3]. O

Proof of Theorem 5.2.1. We wish to use the bounded orthogonality criterion (Theorem 2.7.12)
on & to classify hyperbolicity of B, (I'). Lemma 5.2.2 tells us that C((A,k,S)) is un-
bounded if and only if (A, k,S) € & is an infinite-diameter graphical subgroup of B, (I")
with A connected. Moreover, there are finitely many subgraphs A < I, finitely many
k < n, and finitely many base points S € U C’,go) (A), therefore the bounded hyperbolic
spaces can be bounded uniformly. The bounded orthogonality criterion therefore says that
B, (") is hyperbolic if and only if there do not exist two infinite-diameter graphical subgroups
(A, k1, S1), (A, ko, So) € & with Ay, Ay connected, Ay N Ay = &, and ki + ky < n. We
classify these by applying the characterisation of diameter of graphical subgroups (Lemma
5.1.9).

Lemma 5.1.9 tells us that if A is connected, then (A, k,S) has infinite diameter if and
only if either £ = 1 and A contains a cycle subgraph, or £ > 2 and A contains a cycle or
star subgraph. Note that if there exist two disjoint cycle or star subgraphs €2y, €25 of I'; then

by subdividing edges of I' sufficiently, we can always find two connected disjoint subgraphs
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A1, Ay of T of the form T' \ (e; U -+ U e,,) such that ©Q; < A; for ¢ = 1,2. That is, we
can find (A, k1, S1), (A, ko, So) € & with A; connected, disjoint, and Q; < A; for i = 1,2.
The desired characterisation of hyperbolicity of B,(I') therefore follows from Lemma 5.1.9

by analysing when ki + ko < n. m

The criteria for acylindrical hyperbolicity for HHGs (Theorem 2.7.13) allow us to recover

another theorem of Genevois regarding acylindrical hyperbolicity.

Theorem 5.2.4 ([Genl9a, Theorem 4.10]). Let I" be a finite connected graph and let n € N.

The graph braid group B, (') is either cyclic or acylindrically hyperbolic.

Proof. Suppose B, (I') is non-trivial; by Lemma 5.1.9 it must have infinite diameter. Let
(Bn(T'), &) be the HHG structure given above Lemma 5.2.2, and let X be the universal cover
of UC,(I'). The C-maximal element S € &' is the entire graph braid group S = B, (I"). By
Lemma 5.2.2, C'(S) must be unbounded since I is connected and B,,(I") has infinite diameter.
Furthermore, as B,(I") is torsion-free by [Abr00, Corollary 3.7, it is virtually cyclic if and
only if it is cyclic. The criteria for acylindrical hyperbolicity for HHGs (Theorem 2.7.13)

therefore imply that B, (I") is either cyclic or acylindrically hyperbolic. O]

5.2.2 Relative hyperbolicity and thickness

We wish to classify when a graph braid group B, (I') is relatively hyperbolic or thick. We
do this by introducing a sequence of hypergraphs Oy called the orthogonality graphs, which
encode collections of mutually orthogonal domains arising in the HHS structure of B,(T").
These mimic the hypergraphs employed by Levcovitz in characterising relative hyperbolicity
and thickness of right-angled Coxeter groups [Lev19, Lev20].

Note that we may assume that all graphical subgroups in & have infinite diameter, as
discussed at the end of Section 5.1 (see Corollary 5.1.14). The graphical subgroups given in

the definition below can therefore all be assumed to have infinite diameter.

157



Definition 5.2.5 (Orthogonality graph, hypergraph index). Let I' be a finite graph and
let n € N. The orthogonality graphs O; = O;(I',n) of the graph braid group B,(I") are

hypergraphs, defined inductively as follows.

(1) Oy is the hypergraph whose vertices are proper graphical subgroups (A, %, S) € &, and
whose hyperedges are maximal collections {(Ay, k1, S7),...,{ A, km, Smy} of pairwise
orthogonal domains. Given a hyperedge E = {{A1, k1, S1),...,{Am, km, Sm)}, let (E) be
the subgroup generated by (Ay, k1, S1),...,{ A, km, Sm)-

(2) Define an equivalence relation =; on the set of hyperedges £(O;) by setting E =; E' if
there exists a sequence E = FEy,..., E,, = E’ of hyperedges in £(0;) such that for each
1 < j < m, there exists (A, k,S) e & and (Q;,1;,T;) € E;, {11,111, Tj11) € E; with
Ak, S) e (Q;,1;, Ty) and (A, k, S) © {Qj41, liva, Tjr)-

(3) For each i = 0, define V(O0;11) = V(Oy) and define E < V(Oy) to be a hyperedge of
O,;41 if and only if £ = E; U -+ U E,, for some maximal collection {F,..., E,} of

=,—equivalent hyperedges of O;. Let (E) be the subgroup generated by (Ey), ... ,{(E).

We define the hypergraph indezx of B, (T') to be the smallest integer i such that O; contains
a hyperedge E with (E) = B,(I"). If no such i exists, then the we define the hypergraph

index to be oo.

Recall that the characterisation of diameter of graphical subgroups (Lemma 5.1.9) tells
us that a graphical subgroup (A, k, S) has infinite diameter if and only if A contains a cycle
or star subgraph in one of its components and S has at least one particle in that component
(in the cycle case) or at least two particles in that component (in the star case). Since
we are considering all domains of & to have infinite diameter, one may therefore interpret
the hypergraph index as a measure of complexity of intersection patterns of cycle and star
subgraphs occurring in I". For example, if B,(I") has hypergraph index 0, then there exists

a collection {Aq,..., A} of disjoint subgraphs of I" such that each cycle or star subgraph of
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I" is contained in some A;. If B, (I') has hypergraph index 1, then there exists a collection
{A1,..., A} of subgraphs of I' such that: each cycle or star subgraph of I' is contained in
some A;; for each j there is a collection of disjoint subgraphs of A; containing all cycle and
star subgraphs of A;; and for any j # j’ there exists a sequence A; = Aj,,..., A; = Aj such
that Aj, n Aj,,, contains a cycle or star subgraph for each ¢. One must also be careful to
keep track of the number of particles in each subgraph.

We wish to classify relative hyperbolicity and thickness of B, (I") in terms of this complex-
ity. We claim that if the hypergraph index of B,(I") is k < oo, then B,(I") is strongly thick
of order k, and if the hypergraph index is oo, then B, (T") is relatively hyperbolic. To prove
the latter, we claim that if the hypergraph index is oo, then there exists some 7 such that the
hyperedges E € £(O;) isolate orthogonality of & in the sense of Definition 2.7.14. However,

a priori, the subgroups (E) may not themselves be graphical subgroups, and thus may not

be domains in &. We conjecture that the subgroups (E) are indeed graphical subgroups.

Conjecture 5.2.6. Let I' be a finite connected graph and let n € N. For each ¢ > 0 and each
hyperedge E € £(O;), the subgroup (E) of B,(I') is a graphical subgroup. Furthermore, if
E = {<A17 kq, Sl>, . ,<Am, K, Sm>}, then <Aj, ]fj, Sj> (- <E> for each 1 < 7 < m.

Suppose E € £(O;) has vertex set {(A1, k1, 51),...,{Am, km, Sm)}. The naive approach to
this conjecture would be to show that (E) is a graphical subgroup of the form (|, A;, k, S) for
some k > max{ky, ..., k,} and some initial configuration S such that S nA; is equivalent to
S; in the sense of Remark 5.1.5 for all j. The latter two conditions ensure that (A;, k;, 5;) =
U JRIVN S) for all j. However, we already see that this fails for hyperedges of Oy. Indeed,
suppose [' contains m disjoint cycles Aq,...,A,,, where m > n > 2. Then the graphical
subgroups (A;,1,5;) (where S; is any vertex of A;) are pairwise orthogonal and thus are
contained in a common hyperedge E € £(Op). Suppose (E) is of the form {{J; A;, k, S)
described above. Since we only have n < m particles in B, (T"), there must be some 1 < N <

m such that the initial configuration S does not have a particle in Ay. But then SnAy = &,
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contradicting our assumption that S n Ay is equivalent to Sy. In particular, Lemma 2.5.2
implies that <U; Ak, S) = <U;V:_11 Aju U?:N+1Aj,k,s>. However, (Ay,1,Sy) is not a
subgroup of this, and therefore (£ cannot have this form.

In order to solve this problem, one may try to define a subgraph A of I' by ‘connecting up’
the subgraphs A; so that particles may move freely between them, reducing the number of
particles required for the graphical subgroup (A, k&, S) to contain all subgroups (A;, k;, S;).
Note that since I' is connected, we can always connect two subgraphs A; with a path in
I'. We claim that (F) is a graphical subgroup of the form (A, k, S), where A is obtained by
‘connecting up’ some of the subgraphs A; in a minimal way, £ > max{ki, ...,k }, and SnA;
is equivalent to S; in the sense of Remark 5.1.5 for all j. Again, the latter two conditions
ensure that (A;, k;, S;) £ (A, k, S) for all j.

Assuming Conjecture 5.2.6 is true, we are able to prove our classification theorem.

Theorem 5.2.7. Let I" be a finite graph and let n = 1, k = 0 be integers. Suppose Conjecture

5.2.6 1s true.

(1) If B,(T') has hypergraph index k, then B, (T') is strongly thick of order at most k. In

particular, B, (T") is not relatively hyperbolic.
(2) If B,(T') has hypergraph index o, then B, (T') is relatively hyperbolic.

Proof. Suppose I is disconnected. Then Lemma 2.5.2 tell us that B, (', S) splits as a direct

product
B,(I',S) = By, (A1) x -+ x By, (M),

where Aj,..., Ay are the connected components of I' and n; = |S n A;|. Furthermore, by
Lemma 5.1.9 B,,(A\;) is either infinite or trivial for each ¢. If there exist ¢ # j such that
B, (A;) and B, (A;) have infinite diameter, then there exists € £(0y) with (E) = B, (I');
take E to be the collection of graphical subgroups given by those B, (A;) with infinite

diameter. Thus, B, (I") has hypergraph index 0. Moreover, B, (I') splits as a product with
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infinite factors and is therefore strongly algebraically thick of order 0. On the other hand, if
there exists precisely one 1 < i < d such that B,,(A;) has infinite diameter, then B, (I", S) =~
By, (A;) and so the proof reduces to the connected case. If B,,(A;) is trivial for all ¢, then

B, (T, S) is trivial. We may therefore assume henceforth that I" is connected.

Proof of (1). Suppose B,(I") has hypergraph index k. Then there exists a hyperedge E, .. €
E(Oy) such that (Ey,q,) = B,(I'). Let 0 < i < k. We prove by induction on i that for each
E € £(O;), the subgroup (E) is strongly algebraically thick of order at most i. In particular,
this implies that B, (") is strongly algebraically thick of order at most k.

In the base case of £ € £(Qy), we have E = {(Ay,k1,51),...,{ N, km, Sp)} for some
maximal collection of pairwise orthogonal domains in &, which are assumed to have infinite
diameter by Corollary 5.1.14. Moreover, (E) is the subgroup of B,(I') generated by the
graphical subgroups (A;, k;, S;). By definition of orthogonality, A; " A, = & and k; +k, < n
for all j # r. Since I is connected, there exists some A, and some connected subgraph 2 € I’
such that A, N Q = ¥ and A; < Q for all j # r. Let | = max;,,.{k;} and let T" be any
configuration of ! particles in €. Then we have (A;, k;, S;) = (,1,T) for all j # r, and
hence (A, k;,S;) < (,1,T) for all j # r by Lemma 5.1.12. Moreover, since k, + 1 < n,
we have a graphical subgroup (A, U Q,k, + [, S, u T) which splits as the direct product
Ay ke Spy x (2,1, T). We therefore have (E) < (A, k., S,) x (Q,1,T), so (E) splits as a
direct product with infinite factors, and hence is strongly algebraically thick of order 0.

Now let E € £(O;) for i > 0, and suppose that for all E' € £(O;_), the subgroup (E’) is
strongly algebraically thick of order ¢ — 1. By definition of £(0;), there is a finite collection
of =;_1—equivalent hyperedges {E,}.c;r S £(O;_1) such that the subgroups (FE,) generate
(E). These subgroups therefore satisfy the coarse covering condition in the definition of
strong algebraic thickness (Definition 2.2.7), and are themselves strongly algebraically thick
of order i — 1 by the inductive hypothesis. Furthermore, each subgroup (E,) is quasi-convex

in the sense of Definition 2.1.4. Indeed, each (E,) is a graphical subgroup by Conjecture
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5.2.6, and thus is a domain in the HHS structure &. That is, (E,) is quasi-isometric to an
element F' of a factor system for the universal cover X of UC,(I"), via the orbit map. Since
elements of factor systems are convex subcomplexes, it follows that (£, ) is quasi-convex.

Now consider two subgroups (E,) and (F.) for a,a’ € I. Since E, =, ; E,, item
(2) of the definition of the orthogonality graph O;_; tells us there exists a sequence F, =
Ey,...,E, = Ey of hyperedges in £(0;_;) such that for each 1 < j < m, there exists
(A1, S) e & and (Q,1;,T;) € Ej, (11,141, Tj41) € Ejpq with (A, r, S) = (Q;,1;,T;) and
A1, S) = {Qj41,li41, Tj41). By Lemma 5.1.12, we therefore have (A, r,S) < (Q;,1;,T;) <
(E;y and (A, 7, S) < {11,141, Tj41) < (Ej4+1) for each j. Since we are working under the
assumption that all graphical subgroups in & have infinite diameter (see Corollary 5.1.14),
this means (E;) n (Ej41) has infinite diameter for each j. Thus, the thick chaining con-
dition in the definition of strong algebraic thickness is satisfied, and hence (F) is strongly
algebraically thick of order at most i.

We conclude that B, (') = (E,,q.) is strongly algebraically thick of order at most &, and
hence B, (I") is strongly thick of order at most k& by [BDMO09, Proposition 7.6]. In particular,

[BDMO09, Corollary 7.9] tells us B, (I") is not relatively hyperbolic. O]

Proof of (2). Suppose B, (') has hypergraph index co. We wish to show that & satisfies
the isolated orthogonality conditions (Definition 2.7.14), implying relative hyperbolicity of

B, (I'). In particular, we claim that there exists some ¢ > 0 such that the collection

I, ={(E)e G| Ee&(0:)}

satisfies the isolated orthogonality conditions.
Every pair of orthogonal domains of & is contained in some hyperedge E € £(Oy) by
definition, thus Conjecture 5.2.6 implies every pair of orthogonal domains is nested into some

domain (E) for E € £(Oy). Since each hyperedge of O;_; is contained in a hyperedge of O;

162



for each ¢ = 1 by Definition 5.2.5(3), it follows that every pair of orthogonal domains of &
is nested into some domain (F) for E € £(O;) for each i. Thus, Z; satisfies condition (1) of
isolated orthogonality for all 7.

Suppose Fj #; E, for all pairs of hyperedges Ep, By € £(O;). Then it follows from
Definition 5.2.5(2) that no domain of & is nested into two domains of Z;. Thus, Z; also
satisfies condition (2) of isolated orthogonality. On the other hand, if there exist non-trivial
collections of =;,—equivalent hyperedges of O;, then there exists a hyperedge of O;,; which
strictly contains some hyperedge of ;. Note that each O; has the same finite number
of vertices: V(0;) consists of all proper infinite-diameter graphical subgroups of the form
(A, k,S), for which there are finitely many choices of subgraphs A < T', integers 1 < k < n,
and base points S € UC,(A)©. Tt therefore follows by induction that either there exists
some ¢ such that Z; satisfies the isolated orthogonality conditions or there exists ¢ such that
O; has a hyperedge E with £ = V(0O;), and hence (E) = B,(I"). Since the hypergraph index

of B,(I") is oo, the former must be true. O
This concludes the proof of Theorem 5.2.7. O

As an immediate corollary, we have that graph braid groups form another example of a

class of HHGs which satisfy the dichotomy between thickness and relative hyperbolicity.

Corollary 5.2.8. Let I' be a finite graph and suppose Conjecture 5.2.6 is true. The graph

braid group B, (I') is strongly thick if and only if it is not relatively hyperbolic.

We also conjecture that a stronger version of Theorem 5.2.7 is true, analogous to Lev-
covitz’s characterisation of thickness in right-angled Coxeter groups [Lev20, Theorem A],
which is stated in Section 2.4.2 as Theorem 2.4.26. Levcovitz obtains a lower bound on the
order of strong thickness by studying the divergence of right-angled Coxeter groups and using
Behrstock—Drutu’s relationship between divergence and strong thickness (see Theorem 2.2.9
or [BD14, Corollary 4.17]). In particular, Levcovitz makes use of disc diagram techniques in
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order to construct geodesics with polynomial divergence of degree k + 1 in right-angled Cox-
eter groups with hypergraph index k. We conjecture that similar disc diagram techniques
may be developed for the universal cover of the cube complex UC,(I"), giving the following

result.
Conjecture 5.2.9. Let I' be a finite connected graph and let n > 1, k£ > 0 be integers.

e If B,(I") has hypergraph index k, then B,(I") is strongly thick of order k and has

polynomial divergence of degree k + 1.

e If " has hypergraph index oo, then B, (T") is relatively hyperbolic. Moreover, B, (T")

has exponential divergence if it is one-ended, and infinite divergence otherwise.
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